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Abstract. We exhibit transverse knot types on the standard contact 3-sphere that cannot

be realized as periodic Reeb orbits of a dynamically convex contact form. In particular, such

transverse knot types do not arise as closed characteristics of strictly convex energy levels

on a four dimensional symplectic vector space.

1. Introduction and main results

Knotted structures in the dynamics of flows in dimension three have been studied since

the XIXth century with the works of Lord Kelvin and Helmholtz. The task of understanding

knots of periodic orbits is a topic that was visited by several authors during the XXth century.

For example, in a foundational paper [5] Birman and Williams prove that all periodic orbits

in the Lorentz attractor are fibered knots. More recently, it was proved in [12] that the

same is true for every periodic orbit of the geodesic flow of a Riemannian two-sphere with an

explicit pinching condition on the curvatures. Here we consider Reeb flows on closed contact

3-manifolds and study the transverse knot types realized by their closed orbits.

As observed by Etnyre and Ghrist [11], one may take the complexity of the transverse knots

realized by the closed orbits as a rough measure of the topological complexity of the flow.

In the following discussion consider, for simplicity, the case of the standard contact 3-sphere

(S3, ξ0), where S3 = {(z0, z1) ∈ C2 : |z0|2 + |z1|2 = 1} and ξ0 = TS3 ∩ iTS3. One may ask

how complex a Reeb flow on (S3, ξ0) can be from this viewpoint. The result from [11] asserts

that there exist real-analytic examples where all transverse knot types are simultaneously

realized. The main goal of this paper is to study concrete geometric properties that prevent

this phenomenon from happening, and force restrictions on the transverse knot types that

can arise as closed orbits. Specifically, we look at the property of dynamical convexity, an

important concept introduced by Hofer, Wysocki and Zehnder (HWZ) in [22]. The precise

definition will be recalled below. Two rich sources of examples are the strictly convex energy
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levels in a symplectic vector space, see Theorem 3.4 in [22], and the unit cotangent bundles of

Finsler two-spheres with reversibility r ≥ 1 and flag curvatures pinched by strictly more than

(r/(r + 1))2, see [15, 28]. Additionally, dynamical convexity has been observed in numerous

celestial mechanics models [10,32–34].

The following terminology is useful: a transverse knot in a contact 3-manifold will be called

a Hopf fiber if it is unknotted and has self-linking number −1 with respect to some embedded

spanning disk. The choice of term is motivated by the fact that fibers of the standard Hopf

fibration are transverse unknots with self-linking number −1 in (S3, ξ0).

The standard Liouville form in C2 is α0 = (−i/4) Σj=0,1 z̄jdzj−zjdz̄j , (z0, z1) ∈ C2, and the

standard symplectic form is ω0 = dα0. By a star-shaped domain Ω ⊂ C2 we mean a compact

connected domain with a smooth connected boundary such that: (1) tΩ ⊂ Ω ∀t ∈ [0, 1] and

0 ̸∈ ∂Ω, (2) ∂Ω is transverse to rays issuing from the origin. Note that α0 induces a contact

form on ∂Ω. The corresponding contact structure on ∂Ω is denoted by ξ0 = kerα0 ∩ T∂Ω.

Dynamical convexity of Ω means, by definition, that the Conley-Zehnder index of every

periodic Reeb orbit is at least 3 when computed in a global ω0-symplectic trivialization of ξ0.

If (V, ξ) is a contact manifold and V is diffeomorphic to S3, then we say that a knot K ⊂ S3

admits a transverse representative in (V, ξ) if there exists a diffeomorphism φ : S3 → V such

that φ(K) is transverse to ξ. Our main result reads as follows.

Theorem 1.1. Let Ω be a dynamically convex star-shaped domain. A closed characteristic

on ∂Ω is a Hopf fiber if, and only if, it is symplectically slice in (Ω, ω0), i.e. bounds an

embedded symplectic disk in (Ω, ω0). In particular, the knots 820, 946, 10140 and 10155 in S3

(Rolfsen’s table [39]) admit transverse representatives in (∂Ω, ξ0) that cannot be realized as

closed characteristics.

Remark 1.2. The Hopf flow is “simplest” from the viewpoint of knot complexity: only Hopf

fibers appear. It is, of course, far from true that a Reeb flow on (S3, ξ0) all of whose closed

orbits are Hopf fibers is as simple as the Hopf flow: work of Anosov and Katok [4] provides

transitive examples with exactly two closed orbits in such a way that the union of the closed

orbits is transversely isotopic to a pair of Hopf fibers as seen in the Hopf flow; we call these

Hopf links. Work of Albers, Geiges and Zehmisch [3] explores the Anosov-Katok method

in the context of Reeb flows in three dimensions. See also the appendix of the paper [1]

by Abbondandolo, Benedetti and Edtmair where this construction in the transitive case is

reformulated in modern symplectic language. Moreover, a special case of the result in [8]
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implies that the union of the closed orbits of a Reeb flow on (S3, ξ0) with exactly two closed

orbits is transversely isotopic to a Hopf link.

Remark 1.3. One may ask, as in [11], what transverse knots/links must be realized as periodic

orbits for all Reeb flows on (S3, ξ0). Work of HWZ [21] implies that the Hopf fiber is always

realized. The lack of counter-examples leads us to conjecture that every Reeb flow on (S3, ξ0)

possesses a pair of closed orbits transversely isotopic to a Hopf link. In other words, a Hopf

link should be the minimal basic structure that is always present. Note that the lift of the

geodesic flow of a reversible Finsler two-sphere, from the unit sphere bundle to (S3, ξ0), is a

Reeb flow that realizes a Hopf link: simply lift the unit vectors tangent to an embedded closed

geodesic. Hopf links follow hand-in-hand the historical development of Symplectic Dynamics

since Poincaré’s studies of the planar circular restricted 3-body problem: the retrograde and

direct orbits lift to a Hopf link after Levi-Civitta regularization, both in a low energy regime

or in a subcritical low/high mass-ratio regime. These (lifted) orbits also span the annulus-like

global surface of section that led Poincaré to state his celebrated last geometric theorem, later

known as the Poincaré-Birkhoff theorem, which in turn led Arnold to state his conjecture

on the minimal number of fixed points of Hamiltonian diffeomorphisms. Arnold’s conjecture

paved the way to Floer theory, we refer to the book by Hofer and Roberts [18] for a detailed

historical account. Strong dynamical consequences of the existence of a Hopf link of periodic

orbits were obtained in [27], for instance, under a non-resonance assumption, the growth of

closed orbits with respect to period is at least quadratic.

There are results available in the literature about transverse knot types for dynamically

convex Reeb flows on (S3, ξ0). It follows from results in [22] that every such flow has a Hopf

link made of periodic orbits, and the results in [26], [31] imply that each component spans

a disk-like global surface of section (GSS), and the link spans an annulus-like GSS. In [30],

it is shown that if L is a link made of periodic orbits of a dynamically convex Reeb flow on

(S3, ξ0), such that every component of L is a Hopf fiber, then L is a fibered link and spans a

GSS. It also follows from the results in [30] combined with results by Abbondandolo, Edtmair,

and Kang in [2] that, in the nondegenerate case, the periodic Reeb orbit of minimal action

spans a GSS, although it is not known if this GSS is a disk. This latter statement is also valid

without the nondegeneracy assumption.

Theorem 1.1 will be proved as a consequence of Theorem 1.4 which is a dynamical charac-

terization of smooth compact star-shaped domains in (C2, ω0).
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Consider a compact symplectic manifold (W,ω) with contact-type boundary (V, λ). This

means that there exists a Liouville vector field Y defined on a neighborhood of V = ∂W in

W that is transverse to V , and λ is the pull-back of iY ω by the inclusion map V ↪→ W . It

follows that λ is a contact form on V . The boundary gets decomposed as V = V + ∪ V −,

where Y points outwards along V + and inwards along V −. One calls V + the convex part of

the boundary and V − the concave part of the boundary. The corresponding contact structure

on V is denoted ξ = kerλ.

A transverse link in (V +, ξ) is called symplectically null-homologous if it bounds an embed-

ded symplectic surface in (W,ω). By a symplectic surface we mean one where ω restricts to

an area form. If the surface is a disk then its boundary is called a symplectically slice knot.

Let P be a periodic Reeb orbit on V + with primitive period T > 0, and D ⊂ W be a

symplectic slicing disk for P . Let V +
0 ⊂ V + be the connected component that contains P .

A pair (P ′, D′), consisting of a periodic Reeb orbit P ′ ⊂ V +
0 of (not necessarily primitive)

period T ′ > 0 and a capping disk D′ for P ′ in W , is said to be short and unlinked relative to

(P,D) if T ′ < T , and if D and D′ are homotopic through capping disks to a pair of disjoint

capping disks. We say that (V +
0 , λ) is dynamically convex in W relative to (P,D) if:

(i) The Conley-Zehnder index of P relative to D is at least 3.

(ii) The Conley-Zehnder index of P ′ relative to D′ is at least 3 for every (P ′, D′) that is

short and unlinked relative to (P,D).

See § 2.4 for a precise definition of the Conley-Zehnder index relative to a capping disk.

Motivated by results of Geiges and Zehmisch [14], we encode our analysis in the form of a

symplectic characterization result for star-shaped domains in (C2, ω0).

Theorem 1.4. Let (W,ω) be a connected compact symplectic manifold with contact-type

boundary (V, λ). Suppose that (W,ω) is symplectically aspherical, i.e.
∫
S2 f

∗ω = 0 for every

smooth map f : S2 → W . Assume that some connected component V +
0 ⊂ V + has a simple

periodic orbit P with a symplectic slicing disk D such that (V +
0 , λ) is dynamically convex in

W relative to (P,D). Then either there is a periodic Reeb orbit on V − with period less than∫
D ω, or all of the following hold:

(a) (V +, kerλ) is contactomorphic to (S3, ξ0) and V − = ∅.
(b) The orbit P is unknotted and has self-linking number −1, i.e. it is a Hopf fiber.

(c) (W,ω) is symplectomorphic to a star-shaped region in (C2, ω0).

Remark 1.5. The above statement fully recovers Theorem 1.2 from [35].



ON THE KNOT TYPES OF PERIODIC REEB ORBITS 5

Remark 1.6. If (W,ω) is an exact symplectic cobordism, then the first alternative in the

conclusions of Theorem 1.4 can be improved to provide a contractible periodic Reeb orbit

in V−.

Remark 1.7. If the symplectic asphericity assumption on (W,ω) is dropped, then one can still

conclude that (W,ω) is symplectomorphic to a star-shaped region in (C2, ω0) up to symplectic

blow up at finitely many points. We do not implement this here since the main point of this

work is to study knot types of periodic Reeb orbits, and not to prove yet another dynamical

characterization of symplectic 4-manifolds.

Proof of Theorem 1.1 using Theorem 1.4. The statement that a closed characteristic in ∂Ω

is symplectically slice in (Ω, ω0) if, and only if, it is a Hopf fiber, follows directly from Theo-

rem 1.4 applied to (W,ω) = (Ω, ω0).

A source of symplectically null-homologous transverse links are the transverse intersections

of a complex curve in C2 with the round 3-sphere. Using results of Micallef and White [38] we

can perturb the complex structure to an almost complex structure, and the curve to a pseudo-

holomorphic curve with only transverse double points. These can be swapped for genus using

a standard trick, and we thus get an embedded symplectic surface spanning the link. Such

links are examples of what are known as transverse C-links. The general definition allows for

transverse intersections of a complex curve with a strictly pseudo-convex 3-sphere bounding

a Stein 4-ball in C2, see Definition 4.74 in [41]. But according to Proposition 4.75 in [41],

it was observed by Boileau and Orevkov in [6] that results of Eliashberg [9] imply that all

transverse C-links can be realized as intersections of complex curves with the round 3-sphere.

Moreover, Rudolph proved in [40] that every so-called quasipositive link is smoothly isotopic

to a transverse C-link, and therefore smoothly isotopic to a symplectically null-homologous

link. The converse is proved in [6], namely, every transverse C-link is quasipositive or, more

generally, every symplectically null-homologous link on the boundary of a symplectic 4-ball

is quasipositive.

The upshot is that a smooth link in S3 is smoothly isotopic to a symplectically null-

homologous transverse link in (S3, ξ0) if, and only if, the link is quasipositive. One is then

led to find symplectically slice knots by finding quasipositive knots with slice genus 0. Since

it is conceivable that a knot could be spanned in the 4-ball by a symplectic surface with

genus bigger than the slice genus, we need one more ingredient: a result by Gadgil and

Kulkarni [13] asserting that the symplectic surface minimizes genus on its relative homology
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class. Examples of quasipositive slice knots can be spotted in Rolfsen’s knot table [39]: 820,

946, 10140 and 10155. □
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2. Proof of Theorem 1.4

2.1. Symplectic manifolds with contact-type boundary. Let (W,ω) be a compact sym-

plectic 4-manifold. Assume that there exists a Liouville vector field Y defined on a neighbor-

hood of V = ∂W transverse to V . The primitive α = iY ω of ω near V pulls back to a contact

form λ on V under the inclusion map V ↪→ W . Then V splits into V = V + ⊔ V −, where Y

points outward along V + and points inward along V −. The associated contact structure is

denoted by ξ = kerλ ⊂ TV . We call (W,ω) a symplectic cobordism that is convex at (V +, λ)

and concave at (V −, λ).

Let φt
Y denote the (local) flow of Y , and with ε > 0 small enough consider diffeomorphisms

(1) Φ+ : (−ε, 0]× V + → U+ Φ− : [0, ε)× V − → U− Φ±(a, p) = φa
Y (p)

onto neighborhoods U± of V ± in W . One can show that (Φ±)∗α = eaλ, where here we abuse

notation and write λ for the pull-back of λ under the projection R×V → V . The symplectic

form gets represented by

Φ∗ω = d(eaλ) = ea(da ∧ λ+ dλ) .

The symplectic completion of (W,ω) is the symplectic manifold (W,ω) where W is defined as

(2) W =
(
W ⊔ (−ε,+∞)× V + ⊔ (−∞, ε)× V −) / ∼
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where points are identified according to

Φ+(a, p) ∈ U+ ∼ (a, p) ∈ (−ε, 0]× V + Φ−(a, p) ∈ U− ∼ (a, p) ∈ [0, ε)× V −

and the symplectic form ω is defined as

ω = ω on W, ω = d(eaλ) on (−ε,+∞)× V + and on (−∞, ε)× V − .

Later it will be needed to consider the compactification

(3) W∞ = W ⊔ {+∞}× V + ⊔ {−∞} × V −

where the end [0,+∞)×V + is compactified to [0,+∞]×V + and, similarly, the end (−∞, 0]×
V − is compactified to [−∞, 0]× V −.

Finally we construct symplectic forms ωb on W , parametrized by b > 0. These will be used

later to define areas of pseudo-holomorphic curves in W . For each b > 0 consider a function

ϕ+
b : [0,+∞) → [1,+∞) such that (ϕ+

b )
′ > 0, ϕ+

b agrees with ea near 0, and ϕ+
b (a) → eb as

a → +∞. Define ϕ−
b : (−∞, 0] → (0, 1] by ϕ−

b (a) = (ϕ+
b (−a))−1. It follows that ϕ−

b agrees

with ea near 0, (ϕ−
b )

′ > 0, ϕ−
b (a) → e−b as a → −∞. Define ωb by

(4) ωb =


ω on W

d(ϕ+
b λ) on [0,+∞)× V +

d(ϕ−
b λ) on (−∞, 0]× V +

.

according to (2).

2.2. Periodic Reeb orbits. The Reeb vector field Xλ of λ is uniquely determined by

iXλ
dλ = 0, iXλ

λ = 1. Let us fix a marked point on every periodic trajectory of the flow

of Xλ. This flow is called the Reeb flow and is denoted here by ϕt. By a periodic Reeb orbit

we mean a pair P = (x, T ) where x : R → V is a periodic Reeb trajectory such that x(0) is

the marked point, and T > 0 is a period, not necessarily the primitive one. The set of periodic

orbits will be denoted by P. If T0 > 0 is the primitive period of x then k = T/T0 ∈ N is called

the multiplicity of P . The contact form λ is said to be nondegenerate if dϕT |x(0) : ξx(0) → ξx(0)

does not have eigenvalue 1 for all P = (x, T ) ∈ P.

We assume in the rest of this paper that λ is nondegenerate since it suffices to prove

Theorem 1.4 in this case.
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2.3. Asymptotic operators. Associated to any periodic Reeb orbit P = (x, T ) and any

dλ-compatible complex structure J : ξ → ξ there is an unbounded operator on L2(x(T ·)∗ξ)

η 7→ J(−∇tη + T∇ηXλ)

where ∇ is a symmetric connection on TV and ∇t denotes the associated covariant derivative

along the loop t ∈ R/Z 7→ x(Tt). This is called the asymptotic operator, which turns out

not to depend on the choice of ∇. It is self-adjoint when L2(x(T ·)∗ξ) is equipped with the

inner-product

(η, ζ) 7→
∫
R/Z

dλ(x(Tt))(η(t), J(x(Tt))ζ(t)) dt

Its spectrum is discrete, consists of eigenvalues whose geometric and algebraic multiplicities

coincide, accumulate at±∞. Since λ is nondegenerate, 0 is not an eigenvalue of the asymptotic

operators associated to all pairs (P, J).

2.4. Conley-Zehnder indices. The eigenvectors of the asymptotic operator associated to

any (P = (x, T ), J) are nowhere vanishing sections of x(T ·)∗ξ since these solve linear ODEs.

Hence they have well-defined winding numbers with respect to a dλ-symplectic trivialization

σ of x(T ·)∗ξ. The winding number is independent of the choice of eigenvector of a given

eigenvalue. This allows us to talk about the winding number windσ(ν) of an eigenvalue ν.

For every k ∈ Z there are precisely two eigenvalues (counted with multiplicity) satisfying

windσ = k and, moreover, ν1 ≤ ν2 ⇒ windσ(ν1) ≤ windσ(ν2). Given any δ ∈ R we set

α<δ
σ (P ) = max {windσ(ν) | ν eigenvalue, ν < δ}

α≥δ
σ (P ) = min {windσ(ν) | ν eigenvalue, ν ≥ δ}

pσ,δ(P ) = α≥δ
σ (P )− α<δ

σ (P )

These numbers do not depend on J . Finally we consider the constrained Conley-Zehnder

index

(5) CZδ
σ(P ) = 2α<δ

σ (P ) + pσ,δ(P )

Moreover, two trivializations have a relative winding number and the associated Conley-

Zehnder indices differ by twice the relative winding number.

IfD0 is a capping disk for the periodic Reeb orbit P0 = (x0, T0) in V +, then there is a unique

(up to homotopy) dλ-symplectic trivializing frame σ of x0(T0·)∗ξ that can be completed with

{Y,Xλ} on ∂D0 to a global ω-symplectic trivializing frame of TW along D0. The Conley-

Zehnder index of P0 relative to D0 is defined to be CZ0
σ(P0).
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2.5. Pseudo-holomorphic curves. Choose a dλ-compatible complex structure J on ξ. Fol-

lowing Hofer [16], we define an almost complex structure J̃ on R× V by

(6) J̃ : ∂a 7→ Xλ J̃ |ξ = J

whereXλ and ξ are seen as R-invariant objects in R×V . Then J̃ is R-invariant and compatible

with any symplectic form d(ϕ(a)λ) where ϕ, ϕ′ > 0. In particular, it is compatible with

d(eaλ). Consider a closed Riemann surface (S, j), a finite set Γ ⊂ S and a J̃-holomorphic

map ũ = (a, u) : (S \ Γ, j) → (R× V, J̃) satisfying a finite-energy condition

0 < E(ũ) = sup
ϕ

∫
S\Γ

ũ∗d(ϕλ) < ∞

where the supremum is taken over the set of ϕ : R → [0, 1] satisfying ϕ′ ≥ 0. The number

E(ũ) is called the Hofer energy. The points of Γ are called punctures. A puncture z ∈ Γ

is called positive or negative if a(w) → +∞ or a(w) → −∞ when w → z, respectively. It

is called removable if lim sup |a(w)| < ∞ when w → z. It turns out that every puncture is

positive, negative or removable, and that ũ can be smoothly extended across a removable

puncture; see [16].

Remark 2.1 (Holomorphic polar coordinates). Let z ∈ Γ and letK be a conformal disk centred

at z, i.e. there is a biholomorphism φ : (K, j, z) → (D, i, 0). ThenK\{z} admits positive holo-

morphic polar coordinates (s, t) ∈ [0,+∞)×R/Z defined by (s, t) ≃ φ−1(e−2π(s+it)), and neg-

ative holomorphic polar coordinates (s, t) ∈ (−∞, 0]×R/Z defined by (s, t) ≃ φ−1(e2π(s+it)).

Under the standing assumption that λ is nondegenerate we have:

Theorem 2.2 (HWZ [19]). Suppose that z ∈ Γ is a nonremovable puncture, and (s, t) are

positive holomorphic polar coordinates at z. There exists P = (x, T ) ∈ P and d ∈ R such that

u(s, t) → x(ϵT t+ d) in C∞(R/Z, V ) as s → +∞, where ϵ = ±1 is the sign of the puncture.

The orbit P is called the asymptotic limit of ũ at z. Results by HWZ [19], further refined

in [43], explain that the asymptotic behaviour of a finite-energy surface at a nonremovable

puncture can be described in terms of asymptotic operators. To explain this point we need

to introduce some notation. Let P = (x, T ) ∈ P and T0 > 0 be the primitive period of x.

Denote the coordinates on R/Z×D by (ϑ, z = x1+ ix2), and set α0 = dϑ+x1dx2. A Martinet

tube for P is a diffeomorphism

Ψ : N → R/Z× D

defined on a smooth compact neighborhood N of x(R) such that:
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(MT1) Ψ(x(T0ϑ)) = (ϑ, 0) for all ϑ ∈ R/Z.
(MT2) λ|N = Ψ∗(fα0), where f : R/Z × D → (0,+∞) is smooth and satisfies f(ϑ, 0) = T0,

df(ϑ, 0) = 0 for all ϑ ∈ R/Z.

Let ũ = (a, u) : (S,Γ, j) → (R × V, J̃) be a finite-energy surface, and z ∈ Γ be a nonre-

movable puncture where ũ is asymptotic to P = (x, T ). Let (s, t) be positive or negative

holomorphic polar coordinates at z according to whether z is a positive or negative puncture.

We may assume, without loss of generality, that u(s, 0) → x(0) as |s| → +∞. Fix any Mar-

tinet tube Ψ : N → R/Z×D for P , let s0 > 0 be such that |s| ≥ s0 ⇒ u(s, t) ∈ N , and denote

(ϑ(s, t), z(s, t)) = Ψ(u(s, t)) when |s| ≥ s0.

Theorem 2.3 (HWZ [19], Siefring [43]). Let ϵ = ±1 be the sign of the puncture z and k ∈ N
be the multiplicity of P . Either z(s, t) vanishes identically, or there is r > 0 and an eigenvalue

ν of the asymptotic operator associated to (P, J) such that the following holds. There exists

c ∈ R such that

lim
|s|→+∞

er|s||Dβ[a(s, t)− Ts− c]| = 0 ∀Dβ = ∂β1
s ∂β2

t

and if ϑ̃ is a lift of ϑ then there exists d ∈ R such that

lim
|s|→+∞

er|s||Dβ[ϑ̃(s, t)− kt]| = 0 ∀Dβ = ∂β1
s ∂β2

t

The eigenvalue ν satisfies ϵν < 0, and there exists an eigenvector e(t) of ν and a C-valued
smooth function R(s, t) defined for |s| ≥ s0 such that

z(s, t) = eνs (ê(t) +R(s, t)) lim
|s|→+∞

er|s||DβR(s, t)| = 0 ∀Dβ = ∂β1
s ∂β2

t

where (0, ê(t)) = dΨ|x(Tt) · e(t).

Remark 2.4. If z(s, t) does not vanish identically then we say that ũ has a nontrivial asymp-

totic behaviour at z. In this case we call ν and e(t) the associated asymptotic eigenvalue and

eigenvector, respectively. Otherwise ũ is said to have trivial asymptotic behaviour at z.

Consider almost complex structures J̄ onW that are ω-compatible onW , and agree with an

R-invariant J̃ as in (6) on [0,+∞)×V +∪(−∞, 0]×V −. It follows that J̄ is ω-compatible. As

in [16], [7] we look at a closed Riemann surface (S, j), a finite set Γ ⊂ S and a J̄-holomorphic

map ũ : (S \ Γ, j) → (W, J̄) satisfying a finite-energy condition

0 < E(ũ) =

∫
ũ−1(W )

ũ∗ω + sup
ϕ

∫
ũ−1([0,+∞)×V +)

ũ∗d(ϕλ)

+

∫
ũ−1((−∞,0]×V −)

ũ∗d(ϕλ) < ∞
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where the supremum is taken over the set of smooth ϕ : R → [0, 1] satisfying ϕ′ ≥ 0. The

finite-energy condition implies that punctures are either removable or they behave like the

nonremovable punctures explained before. If (s, t) are positive holomorphic polar coordinates

at a positive puncture z ∈ Γ then ũ(s, t) ∈ [0,+∞) × V + when s ≫ 1, and if one writes

ũ = (a, u) for s ≫ 1 then a(s, t) → +∞ as s → +∞. There is a similar behaviour at

negative punctures, we leave details to the reader. Moreover, if λ is nondegenerate then there

is an asymptotic limit P at a nonremovable puncture, and all the conclusions of Theorem 2.3

hold. In particular, we can talk about nontrivial versus trivial asymptotic behaviour and

asymptotic eigenvalues as in Remark 2.4.

2.6. Fast planes and wind∞. Denote by (C = C∪{∞}, i) the Riemann sphere, and consider

a finite-energy plane ũ : (C, i) → (W,ω) with a positive puncture at ∞. Then

ũ(C \BR(0)) ⊂ [0,+∞)× V +

when R > 0 is large enough. Hence, we can write ũ = (a, u) in components on C \BR(0) and

get an inclusion of vector bundles

(u|C\BR(0))
∗ξ ⊂ (ũ|C\BR(0))

∗TW

We can choose a trivializing dλ-symplectic frame {e1, e2} of (u|C\BR(0))
∗ξ such that the frame

{∂a, Xλ, e1, e2} extends to a trivializing ω-symplectic frame of ũ∗TW . This frame is unique

up to homotopy. Let the asymptotic limit of ũ at ∞ be P = (x, T ). If |z| ≫ 1 then we can

write ũ(z) = (a(z), u(z)) ∈ [0,+∞) in components and assume, without loss of generality,

that u(R) → x(0) as R → +∞. Using the asymptotic behavior we may further assume, up

to homotopy, that the frame {e1, e2} along the loop u(Rei2πt) converges to a dλ-symplectic

frame σ of x(T ·)∗ξ as R → +∞. The resulting frame σ is determined by ũ up to homotopy,

and we shall say that it is aligned with ũ. We denote

(7) CZ(ũ) = CZ0
σ(P )

where σ is aligned with ũ.

To define wind∞(ũ) we follow [20]. If ũ has nontrivial asymptotic behavior at ∞, e(t) is the

asymptotic eigenvector given by Theorem 2.3, and ê(t) ∈ C∗ is determined by representing

e(t) in a frame aligned with ũ, then we set

wind∞(ũ) =
θ(1)− θ(0)

2π
∈ Z

where θ(t) is a continuous choice of argument of ê(t). If ũ has trivial asymptotic behaviour

at ∞ then we set wind∞(ũ) = −∞.
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The plane ũ is said to be fast if wind∞(ũ) ≤ 1. Fast planes in symplectizations were

introduced in [25]. Theorem 2.3 implies that if ũ has nontrivial asymptotic behaviour, and if

ν is the asymptotic eigenvalue, then

ν < δ ⇒ wind∞(ũ) ≤ α<δ
σ (P )

where σ is aligned with ũ.

Finally, we need to recall invariants windπ and wind∞ introduced in [20] for a finite-energy

curve in (R× V ±, J̃). Suppose that the domain is connected and the curve ṽ = (b, v) is not a

(possibly branched) cover of a trivial cylinder. In this case the curve has nontrivial asymptotic

behaviour at every puncture; see Remark 2.4. Choose a dλ-symplectic trivializing frame of

v∗ξ that extends to a collection σ of trivializing frames over the asymptotic limits. The set of

punctures splits as Γ+∪Γ− into positive and negative punctures, and for each z ∈ Γ± we denote

by νz the asymptotic eigenvalue of ṽ at the puncture z. Denote wind∞(ṽ, z, σ) = windσ(νz).

HWZ [20] define

(8) wind∞(ṽ) =
∑
z∈Γ+

wind∞(ṽ, z, σ)−
∑
z∈Γ−

wind∞(ṽ, z, σ)

(9) windπ(ṽ) = wind∞(ṽ)− χ+#Γ+ +#Γ−

where χ is the Euler characteristic of the underlying closed Riemann surface. It is proved

in [20] that

(10) windπ(ṽ) ≥ 0 and windπ(ṽ) = 0 ⇒ v is an immersion.

2.7. Fredholm indices and moduli spaces. For a given P ∈ P we denote by

(11) Mfast(P, J̄)

the set of equivalence classes of embedded fast finite-energy planes ũ : (C, i) → (W, J̄) with a

positive puncture at∞ where it is asymptotic to P satisfying CZ(ũ) ≥ 3. Here two such planes

ũ0, ũ1 are said to be equivalent if there exist A ∈ C∗ and B ∈ C such that ũ1(z) = ũ0(Az+B).

An element of Mfast(P, J̄) represented by a plane ũ will be denoted by [ũ]. Similarly one can

consider Mfast
1 (P, J̄) the set of equivalence classes of pairs (ũ, z) where ũ : (C, i) → (W, J̄)

is an embedded fast finite-energy plane with a positive puncture, satisfying CZ(ũ) ≥ 3, and

z ∈ C. Two pairs (ũ0, z0), (ũ1, z1) are said to be equivalent if there exists (A,B) ∈ C∗ × C
such that ũ1(z) = ũ0(Az +B) holds for all z ∈ C, and that z0 = Az1 +B.

We can set up a Fredholm theory for Mfast(P, J̄) modeled on sections of the normal bundle,

using Sobolev spaces or Hölder spaces. Consider an element of Mfast(P, J̄) represented by
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a fast embedded plane ũ. One can look at sections of the normal bundle of ũ(C) with

exponential decay faster than δ < 0, where δ is placed precisely in the spectral gap between

eigenvalues of the asymptotic operator satisfying windσ = 1 and windσ = 2, where σ is a

dλ-symplectic trivialization of x(T ·)∗ξ aligned with ũ in the sense explained in § 2.6. This is

possible precisely if CZ(ũ) = CZ0
σ(P ) ≥ 3. Note that α<δ

σ (P ) = 1. The Fredholm index of

the linearization Dũ of ∂̄J̄ at ũ restricted to this space of sections is

(12) indδ(ũ) = CZδ
σ(P )− 1 = 3− 1 = 2.

Remark 2.5. The weight δ < 0 will be different for two embedded fast planes asymptotic to P

that form a sphere where c1(TW,ω) does not vanish.

An important consequence is that we have automatic transversality, i.e. Dũ at an embedded

fast plane ũ is always a surjective Fredholm operator. This can be proved by an indirect

argument as follows. There is no loss of generality to deform the normal bundle so that it

coincides with u∗ξ over C \BR(0), R ≫ 1. A global trivializing section of the normal bundle

then induces, up to homotopy, a dλ-symplectic trivialization σN of x(T ·)∗ξ which winds +1

with respect to σ. This means that windσN (µ) = windσ(µ)− 1 for every eigenvalue µ of the

asymptotic operator. Moreover, a nontrivial section ζ ∈ kerDũ admits an asymptotic behavior

governed by an eigensection of the asymptotic operator associated to an eigenvalue ν < δ, see

Theorem 6.1 in [25] or Theorem A.1 in [43]. Hence, ζ does not vanish near ∞ and the total

algebraic count of zeros of ζ is equal to windσN (ν) = windσ(ν)− 1 ≤ α<δ
σ (P )− 1 = 1− 1 = 0.

But the equation Dũζ = 0 allows us to use Carleman’s similarity principle to say that zeros

are isolated and count positively. The important conclusion that ζ never vanishes. Since

the Fredholm index is 2, we would find 3 linearly independent sections of the kernel if the

linearization is not surjective. But the normal bundle is two-dimensional, hence a nontrivial

linear combination of them would have to vanish at some point, contradiction.

The consequence of the above arguments and remarks is that Mfast(P, J̄) is a smooth

manifold of dimension two when equipped with the topology inherited from the functional

analytic set-up used for the Fredholm theory, for any J̄ , provided λ is nondegenerate up to

action T . Similarly, Mfast
1 (P, J̄) is a smooth manifold of dimension four, for any J̄ , provided

λ is nondegenerate up to action T .

Remark 2.6. It turns out that, under our standing assumption that λ is nondegenerate,

the topologies on Mfast(P, J̄) and on Mfast
1 (P, J̄) inherited from the functional analytic set-

up used for the Fredholm theory coincides with the topology of C∞
loc-convergence. There are

situations where this can be proved dropping the assumption that λ is nondegenerate [26],[29].
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By the above remark and automatic transversality, it follows that for every J̄ the space

Mfast
1 (P, J̄) is a smooth 4-dimensional manifold equipped with a smooth evaluation map

(13) ev : Mfast
1 (P, J̄) → W, ev[ũ, z] = ũ(z).

Remark 2.7. The map ev is a local diffeomorphism: this is a direct consequence of the facts

that planes in Mfast
1 (P, J̄) are embedded, and that sections in the kernel of the linearized

Cauchy-Riemann operator with the previously described exponential decay never vanish; see

the argument for this last claim above.

2.8. Intersection theory. Our first goal here is to prove the following statement.

Lemma 2.8. If [ũ], [ṽ] belong to the same connected component of Mfast(P, J̄) then ũ(C) ∩
ṽ(C) ̸= ∅ if, and only if, [ũ] = [ṽ].

The proof uses a weighted version of the intersection number from [42]. Let us fix e ∈
π2(W∞, {+∞}× P ) and denote by

Mfast(P, J̄, e) ⊂ Mfast(P, J̄)

the subset of planes representing e. The weight δ < 0 is placed on the special spectral gap

of the asymptotic operator of (P, J) as explained before, and can be taken the same for

all planes in Mfast(P, J̄, e). Let τ be any trivializing dλ-symplectic frame of x(T ·)∗ξ. If ṽ

belongs to Mfast(P, J̄, e) then we can push ṽ near its positive puncture in the direction of

τ to obtain a map ṽτ that does not intersect ṽ near the puncture. More precisely, choose

the Martinet tube so that in coordinates (ϑ, z = x1 + ix2) the frame { ∂
∂x1

, ∂
∂x2

} along P

does not wind with respect to τ . Use positive holomorphic polar coordinates (s, t) at the

puncture to represent as ṽ(s, t) as a map (a(s, t), ϑ(s, t), z(s, t)). Then, with a nondecreasing

bump function β : R → [0, 1] supported on [s0,+∞), s0 ≫ 1, equal to 1 near +∞, define

ṽτ by ṽτ (s, t) = (a(s, t), ϑ(s, t), z(s, t) + β(s)) near the puncture, and ṽτ = ṽ away from the

puncture. Finally we define

(14) ũ ∗δ ṽ = int(ũ, ṽτ ) + α<δ
τ (P )

for [ũ], [ṽ] ∈ Mfast(P, J̄, e). Here int denotes the intersection number, where W is oriented by

ω∧ω and the domains of ũ and ṽτ carry the complex orientation. One checks that ũ∗δ ṽ does

not depend on the choice of τ . Note that ũ ∗δ ṽ depends only on the corresponding classes

in Mfast(P, J̄, e). Arguing as in [42] one establishes the following lemma which summarizes

some of the main properties of this intersection number.
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Lemma 2.9. The number ũ ∗δ ṽ is nonnegative and does not change when [ũ], [ṽ] vary con-

tinuously on Mfast(P, J̄, e). Moreover, if [ũ], [ṽ] ∈ Mfast(P, J̄, e) satisfy ũ(C) ̸= ṽ(C) and

ũ(C) ∩ ṽ(C) ̸= ∅ then ũ ∗δ ṽ > 0.

Using the frame σN induced by a global trivializing frame of the normal bundle, one

computes for any ũ ∈ Mfast(P, J̄, e)

(15) ũ ∗δ ũ = int(ũ, ũσN ) + α<δ
σN

(P ) = 0 + 0 = 0

Lemma 2.8 follows as a direct consequence of ũ ∗δ ũ = 0 and Lemma 2.9.

Lemma 2.10. Let ũn : (C, i) → (W, J̄) be fast finite-energy planes asymptotic to a simply

covered periodic Reeb orbit P = (x, T ), that define elements of Mfast(P, J̄, e). Let σ be a

(unique up to homotopy) dλ-symplectic trivialization of x(T ·)∗ξ aligned with ũn ∀n. Let

Γ ⊂ C be finite, and assume that ũn converges in C∞
loc(C \ Γ) to a finite-energy map ũ :

(C \ Γ, i) → (W, J̄) asymptotic to P at ∞. If ũ has a nontrivial asymptotic behavior at ∞
with asymptotic eigenvalue ν then windσ(ν) ≤ 1. In particular, if Γ = ∅ then ũ is fast plane.

Proof. Write ũn(s, t) instead of ũn(e
2π(s+it)), and similarly ũ(s, t) for s large enough. Let N

be a small tubular neighborhood of x(R) in V +. We can assume, with no loss of generality,

that σ extends to a dλ-symplectic trivializing frame of ξ|N which we still denote by σ. It

follows from a suitable application of the Monotonicity Lemma, Lemma 5.2 in [7] together

with results on cylinders with small contact area from [23] that there exists s0 ≫ 1 such that

ũn([s0,+∞)× R/Z) ⊂ [0,+∞)×N ∀n, ũ([s0,+∞)× R/Z) ⊂ [0,+∞)×N .

Write ũn = (an, un) and ũ = (a, u) in components, for s ≥ s0. Let πξ : TV
+ → ξ denote the

bundle projection along RXλ. From Theorem 2.3 it follows that if s1 > s0 is fixed large enough

then πξ(∂su) does not vanish on [s1,+∞)×R/Z and the winding number windσ(πξ(∂su)(s1, ·))
of t 7→ πξ(∂su)(s1, t) in the frame σ is equal to windσ(ν). Since πξ(∂sun) → πξ(∂su) in C∞

loc

we find n0 such that if n ≥ n0 then πξ(∂sun) does not vanish on {s1} × R/Z and

windσ(πξ(∂sun)(s1, ·)) = windσ(πξ(∂su)(s1, ·)) = windσ(ν) .

Using σ one can represent (s, t) 7→ πξ(∂sun) by smooth maps ζn : [s0,+∞) → C satisfying

a Cauchy-Riemann type equation. Carleman’s similarity principle implies that either ζn

vanishes identically on (s0,+∞) × R/Z, or its zeros are isolated and count positively. Since

s1 > s0 and ζn(s1, ·) does not vanish when n ≥ n0 we conclude that for every n ≥ n0

the zeroes of ζn on (s0,+∞) × R/Z form a discrete set. If n ≥ n0 and ũn has a trivial

asymptotic behaviour then πξ(∂sũn) vanishes identically near the puncture, absurd. Hence
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ũn has nontrivial asymptotic behaviour when n ≥ n0. Moreover, by Theorem 2.3 ζn(s, t) does

not vanish when s is large enough and for every n we have

lim
s→+∞

wind(ζn(s, ·)) = lim
s→+∞

windσ(πξ(∂sun)(s, ·)) = windσ(νn) .

Standard degree theory implies that windσ(νn)−wind(ζn(s1, ·)) ≥ 0 is the algebraic count of

zeros of ζn on [s1,+∞)×R/Z, i.e. windσ(πξ(∂sun)(s1, ·)) ≤ windσ(νn) for all n ≥ n0. Hence

n ≥ n0 ⇒ windσ(ν) ≤ windσ(νn) ≤ 1

as desired. □

Lemma 2.11. If [ũn] ∈ Mfast(P, J̄, e) is a sequence such that ũn C∞
loc-converges to a plane

ũ, then ũ defines an element of Mfast(P, J̄, e).

Proof. That ũ represents e follows from the convergence. Note that ũ is somewhere injective

since its asymptotic limit P is simply covered. If ũ has a critical point or a self-intersection

then we can invoke [38] to conclude that ũn is not embedded when n is large enough, absurd.

The somewhere injectivity of ũ is crucial here. Hence ũ is embedded. By Lemma 2.10 ũ is

fast. Thus ũ ∈ Mfast(P, J̄, e). □

2.9. SFT Compactness. The SFT compactness theorem from [7] is the generalization of

Gromov’s compactness theorem to curves with punctures. The first step in describing its

statement is a discussion of nodal curves in (W,ω, J̄) or in (R× V, d(eaλ), J̃). A nodal curve

in (W,ω, J̄) is an equivalence class of tuples (ũ, S, j,Γ+,Γ−, D), where

• (S, j) is a (not necessarily connected) closed Riemann surface,

• Γ+ and Γ− are disjoint ordered finite subsets of S,

• ũ : (S\(Γ+∪Γ−), j) → (W, J̄) is a finite-energy pseudo-holomorphic map with positive

punctures on Γ+ and negative punctures on Γ−,

• D is a finite unordered set of pairwise disjoint unordered pairs of distinct points of

S \ (Γ+ ∪ Γ−), such that if {z, w} ∈ D then ũ(z) = ũ(w).

The pairs in D are called nodal pairs and, at times, we might also denote by D the subset of

S \ (Γ+ ∪ Γ−) consisting of all points forming the nodal pairs. Two such tuples are declared

equivalent

(ũ, S, j,Γ+,Γ−, D) ∼ (ũ′, S′, j′,Γ′
+,Γ

′
−, D

′)

if there exists a biholomorphism ϕ : (S, j) → (S′, j′) such that
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• ϕ(Γ±) = Γ′
± and ϕ defines order preserving maps Γ± → Γ′

±,

• ϕ(D) = D′ and ϕ maps pairs to pairs,

• ũ = ũ′ ◦ ϕ.

We may refer to ϕ simply as a reparametrization. Nodal curves in (R × V, d(eaλ), J̃) are

defined in the same manner except that one needs to further quotient by the action of (R,+)

on the first component. In both cases equivalence classes will be denote by [ũ, S, j,Γ+,Γ−, D].

The nodal curve is said to be smooth if D = ∅.

A nodal curve [ũ, S, j,Γ+,Γ−, D] in (W, J̄) is stable if 2g∗+µ∗ ≥ 3 holds for every connected

component S∗ ⊂ S such that ũ|S∗\(Γ+∪Γ−) is the constant map; here g∗ is the genus of S∗

and µ∗ is total number of punctures and nodal points in S∗. For a nodal curve in (R× V, J̃)

stability is defined by further asking the existence of at least one connected component S0 ⊂ S

such that ũ|S0\(Γ+∪Γ−) is not an unbranched cover of a trivial cylinder over a periodic orbit.

Remark 2.12. If (S, j) is a Riemann surface and z ∈ S then the circle (TzS \ 0)/R+ is

naturally induced with a metric (which makes it isometric to the standard R/2πZ), and with

an orientation. We will refer to this circle as the blown up circle at z. The punctured surface

S \{z} may be compactified to a surface with boundary obtained by adding a blown up circle

at z.

The next step is to consider the notion of a holomorphic building u of height k−|1|k+, with
k± ≥ 0. The building u is the equivalence class of tuples

{{ũm}−k−≤m≤k+ , {Φm}−k−≤m≤k+−1}

where:

(i) ũ0 = (ũ0, S0, j0,Γ
0
+,Γ

0
−, D0) represents a nodal curve in (W, J̄).

(ii) ∀m ≥ 1, ũm = (ũm, Sm, jm,Γm
+ ,Γm

− , Dm) represents a nodal curve in (R× V +, J̃).

(iii) ∀m ≤ −1, ũm = (ũm, Sm, jm,Γm
+ ,Γm

− , Dm) represents a nodal curve in (R× V −, J̃).

(iv) The Φm are orientation reversing isometries

Φm :
⋃

z∈Γm
+

(TzSm \ 0)/R+ →
⋃

z∈Γm+1
−

(TzSm+1 \ 0)/R+

that cover order preserving bijections Γm
+ → Γm+1

− , and such that the following holds.

When m ̸= 0 write ũm = (am, um). Add to Sm \(Γm
+ ∪Γm

− ) the blown-up circles {Cz =

(TzS
m\0)/R+}z∈Γm

+
, at the positive punctures to obtain a surface with boundary Ŝm.

The asymptotic behavior allows for the projected map um to be uniquely extended
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to a map um on Ŝm. Analogously, when m < k+, add to Sm+1 \ (Γm+1
+ ∪ Γm+1

− ) the

blown-up circles at the negative punctures Γm+1
− to obtain a surface Ŝm+1 and an

extended map um+1. Then it is required that um+1 ◦Φm = um on Cz for every z ∈ Γ+
m

and every −k− ≤ m ≤ k+ − 1.

Two such collections {{ũm}, {Φm}}, {{ũ′m}, {Φ′
m}} are declared equivalent if they have the

same height, ũ′m represents the same nodal curve as ũm for each m, and the corresponding

reparameterizations intertwine the orientation reversing isometries Φm and Φ′
m. Moreover,

synchronized reordering of the intermediate punctures also define equivalent buildings. The

data {Φm} induces a decoration at the punctures between levels.

Let u be a holomorphic building of height k−|1|k+ represented by {{ũm}, {Φm}} as de-

scribed above. Fix an arbitrary choice r of orientation reversing isometries between blown up

circles of points in nodal pairs in ∪mDm. The data r is called a decoration at nodal pairs.

Consider the surface

Su,r =
(
⊔mSm

)
/ ∼

where blown up circles at points of nodal pairs are identified by r, and Φm is used to identify

blown up circles at Γm
+ with blown up circles at Γm+1

− . The interior circles of Su,r correspond-

ing to blown up circles at nodal pairs or at punctures between levels will be called special

circles. Note that Sm \ (Γm
+ ∪ Γm

− ∪ Dm) can be seen as an open subset of Su,r. By the

asymptotic behavior and conditions (i)-(iv) we can define a continuous map

(16) Fu : Su,r → W∞

that agrees with ũ0 on S0\(Γ0
+∪Γ0

−∪D0), with (+∞, um) on Sm\(Γm
+∪Γm

−∪Dm) whenm ≥ 1,

and with (−∞, um) on Sm \ (Γm
+ ∪ Γm

− ∪Dm) when m ≤ −1. Here we wrote ũm = (am, um)

for m ̸= 0.

The final step in this discussion is the description of SFT convergence of a sequence Cn =

[ṽn,Σn, in, Z
n
+, Z

n
−, ∅] of connected smooth curves in (W,J) with energy and genus bounds.

Such a sequence is said to SFT converge to a building u as above if there exists a sequence

of diffeomorphisms

φn : Su,r → Σn

and finite ordered sets Kn ⊂ Σn, K ⊂ ∪mSm such that the following holds:

(a) Kn is disjoint from the punctures in Σn.

(b) K is disjoint from the all punctures and nodal points in ∪mSm.
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(c) If gn is the genus of Σn and νn = #(Zn
+ ∪ Zn

− ∪ Kn) then 2gn + νn ≥ 3. If S∗ is a

connect component of ∪mSm with genus g∗, and ν∗ is the total number of punctures,

nodal points and points of K in S∗, then 2g∗ + ν∗ ≥ 3.

(d) φn maps blown up circles at Γ
k+
+ onto blown up circles at Zn

+ covering an order

preserving bijection Γ
k+
+ → Zn

+, blown up circles at Γ
−k−
− onto blown up circles at

Zn
− covering an order preserving bijection Γ

−k−
− → Zn

−, and maps K → Kn in an

order-preserving manner.

(e) Let hn be the hyperbolic metric on Σn \ (Zn
+ ∪Zn

− ∪Kn) induced by in, and h be the

hyperbolic metric on ∪m Sm \ (Γm
+ ∪Γm

− ∪Dm∪K) induced by {jm}. Then φ∗
nhn → h

in the C∞
loc-topology on ∪m Sm \ (Γm

+ ∪ Γm
− ∪Dm ∪K), where the latter is seen as an

open subset of Su,r. Moreover, φn maps special circles to closed geodesics of hn.

(f) FCn → Fu in C0, where here Cn is seen as a building of height 0|1|0.
(g) The following holds:

(+) If m ≥ 1 then there exists cm,n → +∞ such that the following holds. For every

compact set X ⊂ Γm
+ ∪ Γm

− ∪Dm and every ε > 0 there exists nX,ϵ such that if

n ≥ nX,ε then ṽn ◦ φn(X) ⊂ [0,+∞)× V + and

sup
z∈X

|πR ◦ ṽn ◦ φn(z)− cm,n − am(z)| ≤ ε

where πR denotes projection onto the R-component.

(−) If m ≤ −1 then there exists cm,n → −∞ such that the following holds. For every

compact set X ⊂ Γm
+ ∪ Γm

− ∪Dm and every ε > 0 there exists nX,ϵ such that if

n ≥ nX,ε then ṽn ◦ φn(X) ⊂ (−∞, 0]× V − and

sup
z∈X

|πR ◦ ṽn ◦ φn(z)− cm,n − am(z)| ≤ ε.

We also need to consider buildings and SFT convergence for curves in (R×V +, d(eaλ), J̃).

The notion of nodal curves in this setting was already explained above. As for the buildings:

one looks at collections

{{ũm}1≤m≤k+ , {Φm}1≤m≤k+−1}

as above where the ũm represent nodal curves in (R×V +, d(eaλ), J̃). In this case it is simpler

to consider Fu defined from the V +-components of the {ũm}, so that Fu takes values on V +.

Conditions (a)-(f) remain unchanged, (g) is replaced by:

(g′) For eachm then there exists cm,n ∈ R such that the following holds. For every compact

set X ⊂ Γm
+ ∪ Γm

− ∪Dm and every ε > 0 there exists nX,ϵ such that if n ≥ nX,ε then

sup
z∈X

|πR ◦ ṽn ◦ φn(z)− cm,n − am(z)| ≤ ε
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where πR denotes projection onto the R-component.

Since λ is nondegenerate, it follows from the SFT compactness theorem [7] that any se-

quence of smooth curves intersecting a given compact subset of W , with energy and genus

bounds, contains a subsequence that SFT converges to a building as described above.

2.10. SFT-limits of fast planes. Let P = (x, T ) be a simply covered periodic Reeb orbit

in V +. Consider a sequence ṽn : (C, i) → (W, J̄) of embedded fast planes in (W,J) asymptotic

to P , satisfying CZ(ṽn) ≥ 3, defining curves in the same connected component of Mfast(P, J̄).

The goal here is to describe properties of the limiting holomorphic building of an SFT-

convergent subsequence of these planes, assuming that they go through a fixed compact set

E ⊂ W .

Remark 2.13. If P ′ = (x′, T ′) is a closed Reeb orbit in V + then from now on we identify

π2(W,x′(R)) ≃ π2(W∞, {+∞} × x′(R)) via an isomorphism e 7→ ê defined as follows. If e

is represented by U : D → W such that U(ei2πt) ⊂ x′(R) then ê is represented by a map

Û from (D ⊔ [0,+∞] × R/Z)/[ei2πt ∼ (0, t)] to W∞ defined by Û(z) = U(z) if z ∈ D, and
Û(s, t) = (s, U(ei2πt)) if (s, t) ∈ [0,+∞] × R/Z. It is simple to show that e 7→ ê is an

isomorphism, and to write a formula for its inverse.

Let e ∈ π2(W,x(R)) map to the λ-positive generator of π1(x(R)) by the boundary map.

Let wn ∈ C and assume that ev[ṽn, wn] ∈ E for all n. Note that [ṽn, wn] ∈ Mfast
1 (P, J̄). Up to

selecting a subsequence, it can be assumed that these planes SFT-converge to a holomorphic

building u of height k−|1|k+

(17) Cn = [ṽn,C ∪ {∞}, i, {∞}, ∅, ∅] n→∞−→ u

and that FCn represents the class e for every n.

For any fixed b > 0 the symplectic area

(18)

∫
C
ṽ∗nωb

is independent of n, where ωb is the symplectic form defined as in (4).

Lemma 2.14. Suppose ev[ṽn, zn] → (+∞, p) ∈ W∞ for some sequence zn ∈ C. If p ̸∈ x(R)
then k+ ≥ 1.

Lemma 2.15. If k+ ≥ 1 then there exists a periodic Reeb orbit P ′ = (x′, T ′) in V + such that

T ′ < T , P ′ spans a capping disk D′ in W that does not intersect some disk in class e, and

the Conley-Zehnder index of P ′ relative to D′ is ≤ 2.
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Lemma 2.16. Let [ũ0, S0, j0,Γ
+
0 ,Γ

−
0 , D0] be the nodal curve at the level zero of u. If D0 ̸= ∅,

k+ = k− = 0 then there exists non-constant J̄-sphere.

Lemma 2.17. If k− ≥ 1 then there exists a periodic Reeb orbit P∗ = (x∗, T∗) in (V −, λ)

satisfying

(19) T∗ ≤ eb

(∫
C
ṽ∗nωb −

∫
S0\(Γ+

0 ∪Γ−
0 )

ũ∗0ωb

)
for every b > 0.

Proof of Lemma 2.14. Assume, by contradiction, that k+ = 0. By SFT convergence, specifi-

cally from condition (f), we have

(+∞, p) ∈ Fu(S
u,r)

from where it follows that Fu(S
u,r)∩({+∞}×V +) = {+∞}×x(R) and p ∈ x(R), absurd. □

Proof of Lemma 2.15. Let c1, . . . , ch be the special circles of Su,r corresponding to the neg-

ative punctures Γ+
1 of ũ1. Note that Su,r is a disk and each cj is contained in its interior.

Note also that the cj necessarily bound pairwise disjoint closed disks Dj in the interior of

Su,r since otherwise there would be a curve in some level m ≥ 1 without positive punctures,

which is impossible.

Consider the building u+ on R× V + formed by the positive levels of u, and denote by r+

the restriction of r to the nodal pairs in the positive levels. Then, by construction, we have

Su+,r+ = Su,r \ (D̊1 ∪ · · · ∪ D̊h) Fu|Su+,r+ = {+∞}× Fu+

since Fu+ takes values on V +. The top level ũk+ consists of one finite-energy sphere with

precisely one positive puncture {z+} = Γ+
k+

where it is asymptotic to P . Hence ũk+ does not

cover a trivial cylinder and has nontrivial asymptotic behaviour at its punctures. Let σ be a

dλ-symplectic trivialization of x(T ·)∗ξ aligned with the ṽn; this is independent of n since all

ṽn represent the same class e in π2(W,x(R)).

The inequality wind∞(ũk+ , z+, σ) ≤ wind∞(ṽn) ≤ 1 follows as in the proof of Lemma 2.10.

Moreover, σ extends to a dλ-symplectic trivialization of (Fu+)
∗ξ still denoted by σ. We

shall now prove that for every m ≥ 1 the curve ũm has a negative puncture z∗m where it is

asymptotic to a closed Reeb orbit P ∗ satisfying CZ0
σ(P

∗) ≤ 2. We start with the top level,

and let ζ1, . . . , ζN be the negative punctures of ũk+ , and Pj be the asymptotic limit of ũk+
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at ζj . If CZ0
σ(Pj) ≥ 3 then wind∞(ũk+ , ζj , σ) ≥ 2. Arguing by contradiction, assume that

CZ0
σ(Pj) ≥ 3 for all j. Then

0 ≤ windπ(ũk+) = wind∞(ũk+)− 2 +N + 1

≤ N −
N∑
j=1

wind∞(ũk+ , ζj , σ) ≤ N − 2N = −N

from where it follows that N = 0, absurd. Hence we find the desired z∗k+ ∈ Γ−
k+

. Now one can

proceed inductively, estimating as above. In fact, all connected components w̃ of all levels

ũm, m ≥ 1, have at most one positive puncture ζ+. Assume that the asymptotic limit P+ of

w̃ at ζ+ satisfies CZ0
σ(P+) ≤ 2. If w̃ has trivial asymptotic behavior at ζ+ then one can use

Carleman’s similarity principle to conclude that w̃ is a (possibly branched) cover of a trivial

cylinder. In this case P+ and the various asymptotic limits P− at the negative punctures

cover the same primitive Reeb orbit, the covering multiplicity of P+ being at least equal to

that of all P−. It follows, in this case, that CZ0
σ(P−) ≤ 2 at all negative punctures. If w̃ has

nontrivial asymptotic behavior at ζ+ then CZ0
σ(P+) ≤ 2 implies that wind∞(w̃, ζ+, σ) ≤ 1

and one can argue as we did for the top level.

By the above argument we can assume, without loss of generality, that the asymptotic limit

P ′ = (x′, T ′) of ũ1 at the negative puncture corresponding to c1 satisfies CZ0
σ(P

′) ≤ 2. It

follows that P ′ is geometrically distinct from P . Consider the disk D ⊂ Su,r spanned by c1.

Note that D is contained in the interior of the larger disk Su,r which is naturally oriented by

the conformal structures of the levels of u. The orientation induced on D orients its boundary

c1. With this orientation, Fu maps c1 to {+∞} × x′(R) along the Reeb flow. If we remove

special circles from the interior of D then we are left with an open subset of Su,r equal to the

union of a certain collection V of connected components of ⊔m≤0Sm \ (Γ+
m ∪ Γ−

m ∪Dm); the

reason why we do not see connected components of ⊔m≥1Sm \ (Γ+
m∪Γ−

m∪Dm) is because this

would force some curve on a level m ≥ 1 to have no positive punctures, absurd. Connected

components in V contained in levels m ≤ −1 are mapped by Fu to {−∞} × V −, hence their

images under Fu do not touch the images of the ṽn. If the image of ũ0 intersects the image

of some ṽn0 then, by stability and positivity of intersections, for all n large enough the image

of ṽn intersects the image of ṽn0 . Here use the fact that to no connected component of its

domain ũ0 restricts a reparametrization of the ṽn0 : for action reasons, every asymptotic limit

at a positive puncture of ũ0 has action strictly less than T (the dλ-area of the top level is

positive). This is a contradiction to Lemma 2.8, and shows that Fu|D defines a capping

disk for P ′ in W∞ that does not intersect the image of ṽn, for any n. By construction, the
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Conley-Zehnder index of P ′ relative to Fu|D is CZ0
σ(P

′) ≤ 2. The inequality T ′ < T follows

from Stokes theorem and the fact that the dλ-area of the top level is positive. □

Proof of Lemma 2.16. By assumption the entire limiting building u is equal to the nodal curve

at level zero. One can describe this nodal curve as a plane Π asymptotic to the simply covered

Reeb orbit P , and several J̄-spheres S1, . . . , Sk in W connected by nodes. By Lemma 2.10 Π

is a fast plane. □

Proof of Lemma 2.17. Let c1, . . . , ch be the special circles of Su,r corresponding to the positive

punctures Γ+
−1 of ũ−1. Note that Su,r is a disk oriented by the conformal structures of the

levels of u. Each cj is contained in the interior of Su,r. If (W,ω) is exact then these circles

necessarily bound pairwise disjoint disks in Su,r, but if not then we might see nested circles:

this situation can only arise if there are curves without positive punctures in the level zero of

u that are not connected via a nodal pair to any other curve with a positive puncture.

In any case, choose j∗ ∈ {1, . . . , h} with the following property: cj∗ corresponds to a

negative puncture of a component of ũ0 that either has a positive puncture, or has no positive

punctures but is connected to a component of ũ0 with a positive puncture by nodal pairs.

Note that in the latter case there is exactly one such nodal pair due to the fact that Su,r has

genus zero and that (W,ω) is symplectically aspherical. Such j∗ must exist, since otherwise

ũ0 has no positive puncture, contradicting the fact that the entire building is the SFT-limit

of a sequence of planes in W with one positive puncture. Let P∗ = (x∗, T∗) be the asymptotic

limit of ũ0 at the negative puncture corresponding to cj∗ .

Consider the disk D∗ in the interior of Su,r bounded by cj∗ . Consider the set J∗ consisting

of those j ∈ {1, . . . , h} such that j ̸= j∗, cj ⊂ D∗ and the disk in Su,r spanned by cj intersects

S0 \ (Γ+
0 ∪ Γ−

0 ∪D0). The set J∗ might be empty. Let D′
∗ be the set obtained by removing

from D∗ the interiors of the disks spanned by the {cj}j∈J∗ . The crucial property for us is

that D′
∗ contains no circle cj with j ∈ J∗ in its interior. When D∗ inherits the orientation

from Su,r and cj∗ is oriented as the boundary of D∗, the map Fu maps cj∗ to {−∞}× x∗(R)
along the Reeb flow. If we remove special circles from the interior of D′

∗ then we are left with

an open subset of Su,r equal to the union of a certain collection V of connected components

of ⊔m≤−1Sm \ (Γ+
m ∪ Γ−

m ∪ Dm); the reason why we do not see connected components of

S0 \ (Γ+
0 ∪ Γ−

0 ∪D0) is because this would force some circle cj with j ∈ J∗ to be contained in

the interior of D′
∗, but these do not exist. Denote by Y ∈ V 7→ m(Y ) ∈ {−k−, . . . ,−1} the

function which assigns the level of u corresponding to Y ∈ V.
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For every m ̸= 0 we write in components ũm = (am, um). By the description of SFT

convergence, and by Stokes theorem, we know that∫
C
ṽ∗nωb = eb

∑
m≥1

∫
Sm\(Γ+

m∪Γ−
m)

u∗mdλ


+

∫
S0\(Γ+

0 ∪Γ−
0 )

ũ∗0ωb + e−b

 ∑
m≤−1

∫
Sm\(Γ+

m∪Γ−
m)

u∗mdλ


and that

T∗ ≤
∑
Y ∈V

∫
Y
u∗m(Y )dλ

with strict inequality when J∗ ̸= ∅. One can now estimate

e−b T∗ ≤ e−b
∑

m≤−1

∫
Sm\(Γ+

m∪Γ−
m)

u∗mdλ ≤
∫
C
ṽ∗nωb −

∫
S0\(Γ+

0 ∪Γ−
0 )

ũ∗0ωb

as desired. □

2.11. The symplectic capping disk as a finite-energy plane. Let P = (x, T ) be a

simply covered periodic Reeb orbit on V +, and let D be a symplectic slicing disk for x(R).
Consider e ∈ π2(W,x(R)) the class represented by D. For the following statement we identify

homotopy classes according to Remark 2.13.

Lemma 2.18. There exist J̄ and ṽ ∈ Mfast(P, J̄, e) such that wind∞(ṽ) = −∞.

Proof. Consider a Martinet tube Ψ : N → R/Z × D for P defined on a small compact

neighborhood N of x(R). As before, if (ϑ, z = x1 + ix2) denote coordinates on R/Z × D,
then the contact form is represented on R/Z× D via Ψ as fα0, where α0 = dϑ+ x1dx2, and

f : R/Z×D → (0,+∞) is identically equal to T0 on R/Z×{0}, and df vanishes identically on

R/Z×{0}. We denote by X = X(ϑ, z) the associated representation of the Reeb vector field

via Ψ. In this proof we assume, for simplicity and without loss of generality, that T0 = 1.

Using Ψ we can represent the end of the symplectic disk D in suitable coordinates (r, t) as

an embedding

ũ = (a, u) : [1− ϵ, 1]× R/Z → (−∞, 0]× R/Z× D

satisfying

i) a(r, t) = r − 1, u(r, t) = (t,∆0(r, t)) with ∆0(1, t) = 0.

ii) d(eτfα0) (∂rũ, ∂tũ) > 0 on [1− ϵ, 1]× R/Z.
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Here (r, t) denote the coordinates on [1 − ϵ, 1] × R/Z, and τ denotes the R-component (first

component) in the product (−∞, 0]× R/Z× D. It follows from i) that

d(eτfα0)|ũ (∂rũ, ∂tũ)

= ∂ra (fα0|u · ∂tu)− ∂ta (fα0|u · ∂ru) + d(fα0)|u(∂ru, ∂tu)

= 1 +O(1− r)

which proves ∂ra(1, t) > 0 ∀t. Denote M = R/Z × D and M̃ = R × D its universal covering

with coordinates still denoted by (ϑ, z). We lift the map ũ to a map ũ : [1−ϵ, 1]×R → R×M̃

denoted in the same manner. The coordinates on the universal covering [1 − ϵ, 1] × R of

[1 − ϵ, 1] × R/Z are still denoted (r, t). We also lift f to a smooth function on M̃ which is

1-periodic in ϑ, still denoted by f . The M̃ -component u of ũ has components u = (t,∆0(r, t))

denoted just as before. Note that ∆0 and ∇ũ are 1-periodic in t. Perhaps after shrinking ϵ

we have

(20) inf
(r,t)

∂ra(r, t) > 0 and inf
(r,t)

α0 · (∂tu0, 0) > 0.

For each positive δ < ϵ consider a smooth function ϕδ : R → [0, 1] satisfying ϕδ(r) = 1

when r lies on a neighborhood of (−∞, 1 − δ], ϕδ(r) = 0 when r lies on a neighborhood of

[1,+∞), and ∥ϕ′
δ∥∞ ≤ 2/δ. Consider ṽδ : [1− ϵ, 1]× R → R× M̃ defined by

(21) ṽδ = (a, vδ) = (r − 1, vδ) where vδ := (t, ϕδ(r)∆0(r, t)).

Claim. If δ is small enough then d(eτλ) (∂rṽδ, ∂tṽδ) > 0 on [1− ϵ, 1]× R.

Proof of the Claim. Note that ṽδ − ũ = (0, 0, (ϕδ − 1)∆0), hence

(22) |∇ṽδ(r, t)−∇ũ(r, t)| ≤ ∥ϕ′
δ∥∞ |∆0(r, t)|+ ∥∇∆0∥∞ ≤ 2

δ
|∆0(r, t)|+ ∥∇∆0∥∞

Since ∆0(1, t) = ∂t∆0(1, t) = 0 ∀t we use Taylor’s formula to find c1 > 0 independent of δ

such that

(23) |∆0(r, t)|+ |∂t∆0(r, t)| ≤ c1(1− r).

If r > 1− δ then 2δ−1 < 2(1− r)−1 and we get from this and (22) that

|∇ṽδ(r, t)−∇ũ(r, t)| ≤ 2

δ
c1(1− r) + ∥∇∆0∥∞ ≤ 2c1 + ∥∇∆0∥∞ when r > 1− δ.

Since ṽδ(r, t) = ũ(r, t) when r ≤ 1− δ, we conclude that

(24) ∥∇ṽδ∥∞ ≤ ∥∇ṽδ −∇ũ∥∞ + ∥∇ũ∥∞ ≤ c2

for some c2 independent of δ.
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Note that ∥∆0∥∞ ≤ 1. There exists c3 > 0 such that

(25) |df (ϑ,z) · w| ≤ c3 |z| ∥w∥ and |f(ϑ, z)| ≤ c3 ∀(ϑ, z) ∈ R× D, ∀w ∈ R3.

Note also that

(26) |α0(ϑ,z) · w| ≤ (1 + |z|)∥w∥ ≤ 2∥w∥ ∀z, w.

If r > 1− δ we can estimate at the point (r, t)

(27)

|(df ∧ α0) (∂rvδ, ∂tvδ)| ≤ |df · ∂rvδ||α0 · ∂tvδ|+ |df · ∂tvδ||α0 · ∂rvδ|

≤ 2c3 |∆0| ∥∂rvδ∥ ∥∂tvδ∥

≤ 2c1c
2
2c3(1− r)

≤ 2c1c
2
2c3δ

where (23), (24), (25) and (26) were used. If r > 1− δ we estimate at the point (r, t)

(28)

|fdα0 (∂rvδ, ∂tvδ)| = |fdα0 (∂rvδ, (1, ϕδ(r)∂t∆0))|

≤ c3∥∇ṽδ∥∞|∂t∆0|

≤ c1c2c3(1− r)

≤ c1c2c3δ

where (23), (24), (25) and (26) were used again. Combining (27) with (28) we find c4 > 0

independent of δ such that

(29) |d(fα0) (∂rvδ, ∂tvδ)| ≤ c4δ at the point (r, t) ∈ (1− δ, 1]× R.

Consider m = inf{f(θ, z)} > 0. Finally we estimate

(dτ ∧ fα0) (∂rṽδ, ∂tṽδ)

= ∂ra (fα0 · ∂tvδ)− ∂ta (fα0 · ∂rvδ)

= (fα0 · (1, 0) + fα0 · (0, ϕδ∂t∆0))

≥ m (1− 2c3|∂t∆0|)

≥ m− c5(1− r)

for some c5 > 0 independent of δ. It follows that

(30) (dτ ∧ fα0) (∂rṽδ, ∂tṽδ) ≥ m− c5δ whenever r > 1− δ.

Combining (29) with (30) we get

(31) (dτ ∧ fα0 + d(fα0)) (∂rṽδ, ∂tṽδ) ≥ m− (c4 + c5)δ if r > 1− δ.
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Since ṽδ = ũ when r ≤ 1− δ we conclude, using ii), that

(dτ ∧ fα0 + d(fα0)) (∂rṽδ, ∂tṽδ) > 0

on [1− ϵ, 1]× R. The claim is proved.

The arguments so far show that ũ can be modified to a smooth symplectic map ṽδ which

can be concatenated to the trivial cylinder in a smooth way. This allows us to find J̄ such

that the resulting embedded symplectic surface (disk) is J̄-holomorphic, yielding the desired

element of Mfast(P, J̄, e) satisfying wind∞ = −∞. □

2.12. Concluding the proof of Theorem 1.4. Recall that we may work under the as-

sumption that λ is nondegenerate.

Consider the projection Mfast
1 (P, J̄) → Mfast(P, J̄) obtained by forgetting the marked

point. This is a surjective submersion. Let e be the homotopy class induced by the symplectic

slicing disk D for P . We define Mfast
1 (P, J̄, e) to be the pre-image of Mfast(P, J̄, e) by the

forgetful map above. By Lemma 2.18 Mfast
1 (P, J̄, e) ̸= ∅. It was already observed before that

(32) ev : Mfast
1 (P, J̄, e) → W

is a smooth submersion; see Remark 2.7. Hence its image is open and non-empty in W .

Lemma 2.9 implies that (32) is injective.

To prove surjectivity of (32) we will show that ev(Mfast
1 (P, J̄, e)) is closed in W . To this

end suppose that [ṽn, zn] ∈ Mfast
1 (P, J̄, e) and that ev[ṽn, zn] converges to a point q ∈ W .

Up to choice of a subsequence, we may assume that [ṽn,C∪ {∞}, i, {∞}, ∅, ∅] SFT-converges
to a building u of height k−|1|k+. We claim that k+ = 0. If not then Lemma 2.15 implies

that V +
0 is not dynamically convex in W relative to (P,D). If k− ≥ 1 then Lemma 2.17

provides a periodic Reeb orbit P∗ = (x∗, T∗) in V − such that T∗ satisfies (19) for all b > 0.

The monotonicity lemma implies that the term
∫
ũ−1
0 (W ) ũ

∗
0ωb has a positive lower bound

independent of b, where ũ0 is the map representing the level zero of u. Taking the limit as

b → 0+ we get T∗ < T . This is one of the alternatives in Theorem 1.4, and we are now left

with the case k− = 0. In this case, u consists of a single nodal curve ũ0. Lemma 2.16 tells

us that there is a J̄-holomorphic sphere if ũ0 has nodal points, but such spheres are excluded

since (W,ω) is aspherical. Hence ũ0 is a finite-energy plane asymptotic to P . It is the C∞
loc-

limit of a suitable reparametrization of the planes in the sequence ṽn which we still denote

by ṽn. Lemma 2.11 implies that ũ0 represents a curve in Mfast(P, J̄, e). SFT convergence

implies that [ṽn, zn] converges in Mfast
1 (P, J̄, e) to [ũ0, ζ] for some ζ ∈ C. Hence ev[ũ0, ζ] = q.
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If V +
1 is a connected component of V +, V +

1 ̸= V +
0 , then fix q in (0,+∞)× V +

1 and, using

the above, find [ṽ, z] ∈ Mfast
1 (P, J̄, e) such that ev[ṽ, z] = q. Hence we get J̃-holomorphic disk

with boundary on {0}×V +
1 through q, violating the maximum principle for the R-component

of this disk. It follows that V + = V +
0 .

Now take a sequence qn ∈ W satisfying qn → (+∞, p) on W∞, with p ∈ V+ \ x(R). We

claim that if ev[ṽn, zn] = qn then there is n0 such that n ≥ n0 ⇒ ṽn(C) ⊂ [0,+∞) × V +. If

not then we could apply Lemma 2.14 to conclude that the sequence [ṽn,C∪{∞}, i, {∞}, ∅, ∅]
SFT-converges to a building with k+ > 0, and Lemma 2.15 contradicts the assumed dynamical

convexity of (V +
0 , λ) in W relative to (P,D). We now claim that if n ≥ n0 and ṽn = (bn, vn)

then vn is an immersion transverse to Xλ. This follows since ṽn, with n ≥ n0, defines a plane

in (R × V +, J̃) and we can estimate 0 ≤ windπ(ṽn) = wind∞(ṽn) − 1 ≤ 0. Moreover, vn is

injective and does not intersect x(R). This is a consequence of ṽn ∗δ (c · ṽn) = 0 for all c > 0,

where c · ṽn denotes R-translation by c > 0. Hence vn determines an embedded disk for P

in V + transverse to the Reeb vector field. It follows that P is unknotted and has self-linking

number −1.

At this point it is simple to show that (V +, kerλ) ≃ (S3, ξ0). Above we showed that there

exists [ṽ] ∈ Mfast(P, J̄, e) satisfying ṽ(C) ⊂ [0,+∞) × V +. Up to translating down we may

assume that min b(C) ∈ [0, 1] where ṽ = (b, v). The space of planes in Mfast(P, J̄, e) that

are contained in [0,+∞)× V + and whose images intersect [0, 1]× V + is then non-empty. It

is also compact since a building obtained as the SFT-limit of a sequence of such planes has

height 0|1|k+ and its zero level is contained in [0,+∞) × V +, so Lemma 2.15 tells us that

k+ = 0, and the zero level has no spheres because J̃ is compatible with an exact symplectic

form on [0,+∞) × V +. Hence the limiting building is a plane in ([0,+∞) × V +, J̃), which

by Lemma 2.11 belongs to Mfast(P, J̄, e). As explained before, such a plane projects to an

embedded spanning disk for P in V + transverse to the flow. The compactness result just

proved allows us to obtain an S1-family of such spanning disks. Moreover, any two such

planes ṽj = (bj , vj), j ∈ {0, 1}, satisfy either v0(C) = v1(C) or v0(C) ∩ v1(C) = ∅; in fact, if

v0(C)∩v1(C) ̸= ∅ then, up to relabeling, we find c ≥ 0 such that ṽ0(C)∩ (c · ṽ1)(C) ̸= ∅, hence
c = 0 and [ṽ0] = [ṽ1] by Lemma 2.8, and v0(C) = v1(C). It follows that the projections to V +

of the planes in the S1-family form an open book with disk-like pages supporting (V +, kerλ).

Thus (V +, kerλ) ≃ (S3, ξ0).

Finally we need to prove that (W,ω) is symplectomorphic to a star-shaped domain in

(C2, ω0). Since (V = V +, kerλ) is contactomorphic to (S3, ξ0), we can find a star-shaped
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domain Ω ⊂ C2, ϵ > 0 small and a symplectomorphism

φ : ([−ϵ,+∞)× V +, d(eaλ)) → ([−ϵ,+∞)× ∂Ω, d(eaλ0)).

Here λ0 = ι∗α0, where ι : ∂Ω → C2 is the inclusion map and α0 is the standard Liouville form

on C2. Note that ((− ϵ
2 ,+∞)×∂Ω, d(eaλ0)) is symplectomorphic to (C2\K,ω0) for a compact

set K ⊂ Ω\∂Ω. In fact, K can be taken as a suitable scaling of Ω. In view of the definition of

the symplectic completion (W,ω), see § 2.1, (− ϵ
2 ,+∞)× V + can be seen as the complement

in W of some compact subset of W \∂W . Hence, there is a suitable compact set K ′ ⊂ W \∂W
such that φ can be used to define a symplectomorphism (W \K ′, ω) → (C2 \K,ω0). We can

now apply Theorem 9.4.2 from [37] to conclude that (W,ω) is symplectomorphic to (C2, ω0)

via a symplectomorphism that sends W to Ω.

Remark 2.19. Another interesting consequence from the above argument is that the support-

ing open book with binding P in (V +, ξ) = (S3, ξ0) has pages that are global surfaces of

section for the flow. This follows from arguments as in [25].
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Moskov. Mat. Obšč. 23 (1970), 3–36 (Russian).

[5] J. S. Birman and R. F. Williams, Knotted periodic orbits in dynamical systems–I: Lorenz’s equation,

Topology 22 (1983), no. 1, 47–82.
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Invent. Math. 199 (2015), no. 2, 333–422.

[28] U. Hryniewicz and P. A. S. Salomão, Global properties of tight Reeb flows with applications to Finsler

geodesic flows on S2, Math. Proc. Cambridge Philos. Soc. 154 (2013), no. 1, 1–27.

[29] , Elliptic bindings for dynamically convex Reeb flows on the real projective three-space, Calc. Var.

Partial Differential Equations 55 (2016), no. 2, Art. 43, 57.

[30] U. L. Hryniewicz, P. A. S. Salomão, and R. Siefring, Global surfaces of section with positive genus for

dynamically convex Reeb flows, J. Fixed Point Theory Appl. 24 (2022), no. 2, Paper No. 45, 21.

[31] U. Hryniewicz, P. A. S. Salomão, and K. Wysocki, Genus zero global surfaces of section for Reeb flows

and a result of Birkhoff, J. Eur. Math. Soc. (JEMS) 25 (2023), no. 9, 3365–3451.

[32] X. Hu, L. Liu, I. Ou, P. A. S. Salomão, and G. Yu, A symplectic dynamics approach to the spatial isosceles

three-body problem, J. Eur. Math. Soc. (JEMS), to appear (2025).



ON THE KNOT TYPES OF PERIODIC REEB ORBITS 31

[33] C. Joung and O. van Koert, Computational symplectic topology and symmetric orbits in the restricted

three-body problem, Nonlinearity 38 (2025), no. 2, 025015.

[34] L. Liu and P. A. S. Salomão, Finite energy foliations in the restricted three-body problem, arXiv:2506.17867

(2025).

[35] D. McDuff, Symplectic manifolds with contact type boundaries, Invent. Math. 103 (1991), no. 3, 651–671.

[36] D. McDuff and D. Salamon, Introduction to symplectic topology, Third, Oxford Graduate Texts in Math-

ematics, Oxford University Press, Oxford, 2017.

[37] , J-holomorphic curves and symplectic topology, 2nd ed., American Mathematical Society Collo-

quium Publications, vol. 52, American Mathematical Society, Providence, RI, 2012.

[38] M. J. Micallef and B. White, The structure of branch points in minimal surfaces and in pseudoholomorphic

curves, Ann. of Math. (2) 141 (1995), no. 1, 35–85.

[39] D. Rolfsen, Knots and links 7 (1990), xiv+439. Corrected reprint of the 1976 original.

[40] L. Rudolph, Algebraic functions and closed braids, Topology 22 (1983), no. 2, 191–202.

[41] , Knot theory of complex plane curves, Handbook of knot theory, 2005, pp. 349–427.

[42] Richard Siefring, Intersection theory of punctured pseudoholomorphic curves, Geom. Topol. 15 (2011),

no. 4, 2351–2457.

[43] , Relative asymptotic behavior of pseudoholomorphic half-cylinders, Comm. Pure Appl. Math. 61

(2008), no. 12, 1631–1684.

Umberto L. Hryniewicz, Lehrstuhl für Geometrie und Analysis, RWTH Aachen University,

Pontdriesch 10-12, D-52062 Aachen, Germany

Email address: hryniewicz@mathga.rwth-aachen.de

Richard Siefring

Pedro A. S. Salomão, Shenzhen International Center for Mathematics - SUSTech, 1088

Xueyuan Avenue, Shenzhen, China

Email address: psalomao@sustech.edu.cn


	1. Introduction and main results
	2. Proof of Theorem 1.4
	2.1. Symplectic manifolds with contact-type boundary
	2.2. Periodic Reeb orbits
	2.3. Asymptotic operators
	2.4. Conley-Zehnder indices
	2.5. Pseudo-holomorphic curves
	2.6. Fast planes and wind
	2.7. Fredholm indices and moduli spaces
	2.8. Intersection theory
	2.9. SFT Compactness
	2.10. SFT-limits of fast planes
	2.11. The symplectic capping disk as a finite-energy plane
	2.12. Concluding the proof of Theorem 1.4

	References

