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ABSTRACT. We exhibit transverse knot types on the standard contact 3-sphere that cannot
be realized as periodic Reeb orbits of a dynamically convex contact form. In particular, such
transverse knot types do not arise as closed characteristics of strictly convex energy levels

on a four dimensional symplectic vector space.

1. INTRODUCTION AND MAIN RESULTS

Knotted structures in the dynamics of flows in dimension three have been studied since
the XIXth century with the works of Lord Kelvin and Helmholtz. The task of understanding
knots of periodic orbits is a topic that was visited by several authors during the XXth century.
For example, in a foundational paper [5] Birman and Williams prove that all periodic orbits
in the Lorentz attractor are fibered knots. More recently, it was proved in [12] that the
same is true for every periodic orbit of the geodesic flow of a Riemannian two-sphere with an
explicit pinching condition on the curvatures. Here we consider Reeb flows on closed contact

3-manifolds and study the transverse knot types realized by their closed orbits.

As observed by Etnyre and Ghrist [11], one may take the complexity of the transverse knots
realized by the closed orbits as a rough measure of the topological complexity of the flow.
In the following discussion consider, for simplicity, the case of the standard contact 3-sphere
(83,&0), where S3 = {(20,21) € C% : |20]® + |z1]? = 1} and & = T'S® N4iTS3. One may ask
how complex a Reeb flow on (53, &) can be from this viewpoint. The result from [11] asserts
that there exist real-analytic examples where all transverse knot types are simultaneously
realized. The main goal of this paper is to study concrete geometric properties that prevent
this phenomenon from happening, and force restrictions on the transverse knot types that
can arise as closed orbits. Specifically, we look at the property of dynamical convexity, an
important concept introduced by Hofer, Wysocki and Zehnder (HWZ) in [22]. The precise

definition will be recalled below. Two rich sources of examples are the strictly convex energy
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levels in a symplectic vector space, see Theorem 3.4 in [22], and the unit cotangent bundles of
Finsler two-spheres with reversibility » > 1 and flag curvatures pinched by strictly more than
(r/(r+1))2, see [15,28]. Additionally, dynamical convexity has been observed in numerous

celestial mechanics models [10}32-34].

The following terminology is useful: a transverse knot in a contact 3-manifold will be called
a Hopf fiber if it is unknotted and has self-linking number —1 with respect to some embedded
spanning disk. The choice of term is motivated by the fact that fibers of the standard Hopf

fibration are transverse unknots with self-linking number —1 in (S2, &).

The standard Liouville form in C? is ag = (—i/4) Xj—0,1 Zjdz;—2jdZ;, (20,21) € C?, and the
standard symplectic form is wy = doyp. By a star-shaped domain Q C C? we mean a compact
connected domain with a smooth connected boundary such that: (1) Q2 C Q V¢ € [0, 1] and
0 & 092, (2) 0N is transverse to rays issuing from the origin. Note that ag induces a contact
form on 0€). The corresponding contact structure on 92 is denoted by &y = ker ag N TOS2.
Dynamical convexity of ) means, by definition, that the Conley-Zehnder index of every

periodic Reeb orbit is at least 3 when computed in a global wp-symplectic trivialization of &.

If (V, &) is a contact manifold and V is diffeomorphic to S3, then we say that a knot K C S°
admits a transverse representative in (V, &) if there exists a diffeomorphism ¢ : S — V such

that ¢(K) is transverse to £&. Our main result reads as follows.

Theorem 1.1. Let Q be a dynamically convex star-shaped domain. A closed characteristic
on 02 is a Hopf fiber if, and only if, it is symplectically slice in (,wo), i.e. bounds an
embedded symplectic disk in (Q,wg). In particular, the knots 829, 946, 10140 and 10155 in S3
(Rolfsen’s table [39]) admit transverse representatives in (082, &) that cannot be realized as

closed characteristics.

Remark 1.2. The Hopf flow is “simplest” from the viewpoint of knot complexity: only Hopf
fibers appear. It is, of course, far from true that a Reeb flow on (S2,&y) all of whose closed
orbits are Hopf fibers is as simple as the Hopf flow: work of Anosov and Katok [4] provides
transitive examples with exactly two closed orbits in such a way that the union of the closed
orbits is transversely isotopic to a pair of Hopf fibers as seen in the Hopf flow; we call these
Hopf links. Work of Albers, Geiges and Zehmisch [3| explores the Anosov-Katok method
in the context of Reeb flows in three dimensions. See also the appendix of the paper [1]
by Abbondandolo, Benedetti and Edtmair where this construction in the transitive case is

reformulated in modern symplectic language. Moreover, a special case of the result in [§]
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implies that the union of the closed orbits of a Reeb flow on (52, &y) with exactly two closed

orbits is transversely isotopic to a Hopf link.

Remark 1.3. One may ask, as in [11], what transverse knots/links must be realized as periodic
orbits for all Reeb flows on (S3,&y). Work of HWZ [21] implies that the Hopf fiber is always
realized. The lack of counter-examples leads us to conjecture that every Reeb flow on (S3, &)
possesses a pair of closed orbits transversely isotopic to a Hopf link. In other words, a Hopf
link should be the minimal basic structure that is always present. Note that the lift of the
geodesic flow of a reversible Finsler two-sphere, from the unit sphere bundle to (S3,&p), is a
Reeb flow that realizes a Hopf link: simply lift the unit vectors tangent to an embedded closed
geodesic. Hopf links follow hand-in-hand the historical development of Symplectic Dynamics
since Poincaré’s studies of the planar circular restricted 3-body problem: the retrograde and
direct orbits lift to a Hopf link after Levi-Civitta regularization, both in a low energy regime
or in a subcritical low/high mass-ratio regime. These (lifted) orbits also span the annulus-like
global surface of section that led Poincaré to state his celebrated last geometric theorem, later
known as the Poincaré-Birkhoff theorem, which in turn led Arnold to state his conjecture
on the minimal number of fixed points of Hamiltonian diffeomorphisms. Arnold’s conjecture
paved the way to Floer theory, we refer to the book by Hofer and Roberts [18] for a detailed
historical account. Strong dynamical consequences of the existence of a Hopf link of periodic
orbits were obtained in [27], for instance, under a non-resonance assumption, the growth of

closed orbits with respect to period is at least quadratic.

There are results available in the literature about transverse knot types for dynamically
convex Reeb flows on (S2,&). It follows from results in [22] that every such flow has a Hopf
link made of periodic orbits, and the results in [26], [31] imply that each component spans
a disk-like global surface of section (GSS), and the link spans an annulus-like GSS. In [30],
it is shown that if L is a link made of periodic orbits of a dynamically convex Reeb flow on
(53, &), such that every component of L is a Hopf fiber, then L is a fibered link and spans a
GSS. It also follows from the results in [30] combined with results by Abbondandolo, Edtmair,
and Kang in [2] that, in the nondegenerate case, the periodic Reeb orbit of minimal action
spans a GSS, although it is not known if this GSS is a disk. This latter statement is also valid

without the nondegeneracy assumption.

Theorem [I.1] will be proved as a consequence of Theorem [I.4] which is a dynamical charac-

terization of smooth compact star-shaped domains in (C?,wyp).
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Consider a compact symplectic manifold (W, w) with contact-type boundary (V,A). This
means that there exists a Liouville vector field Y defined on a neighborhood of V' = W in
W that is transverse to V, and A is the pull-back of iyw by the inclusion map V — W. It
follows that X is a contact form on V. The boundary gets decomposed as V = VT UV,
where Y points outwards along V' and inwards along V~. One calls V* the conver part of
the boundary and V'~ the concave part of the boundary. The corresponding contact structure
on V is denoted & = ker .

A transverse link in (V1 €) is called symplectically null-homologous if it bounds an embed-
ded symplectic surface in (W,w). By a symplectic surface we mean one where w restricts to

an area form. If the surface is a disk then its boundary is called a symplectically slice knot.

Let P be a periodic Reeb orbit on VT with primitive period 7" > 0, and D C W be a
symplectic slicing disk for P. Let VO+ C V7T be the connected component that contains P.
A pair (P',D’), consisting of a periodic Reeb orbit P’ C V;" of (not necessarily primitive)
period 7" > 0 and a capping disk D’ for P’ in W, is said to be short and unlinked relative to
(P,D) if T" < T, and if D and D" are homotopic through capping disks to a pair of disjoint
capping disks. We say that (Vy', \) is dynamically convex in W relative to (P, D) if:

(i) The Conley-Zehnder index of P relative to D is at least 3.
(ii) The Conley-Zehnder index of P’ relative to D’ is at least 3 for every (P’, D’) that is
short and unlinked relative to (P, D).

See § for a precise definition of the Conley-Zehnder index relative to a capping disk.
Motivated by results of Geiges and Zehmisch [14], we encode our analysis in the form of a

symplectic characterization result for star-shaped domains in (C2,wp).

Theorem 1.4. Let (W,w) be a connected compact symplectic manifold with contact-type
boundary (V,X). Suppose that (W,w) is symplectically aspherical, i.e. f52 f*w =0 for every
smooth map f : S* — W. Assume that some connected component V}f C VT has a simple
pertodic orbit P with a symplectic slicing disk D such that (VO+, A) is dynamically conver in
W relative to (P, D). Then either there is a periodic Reeb orbit on V'~ with period less than
fD w, or all of the following hold:

(a) (VT ker\) is contactomorphic to (S3,&) and V=~ = ().
(b) The orbit P is unknotted and has self-linking number —1, i.e. it is a Hopf fiber.

(c) (W,w) is symplectomorphic to a star-shaped region in (C2,wp).

Remark 1.5. The above statement fully recovers Theorem 1.2 from [35].
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Remark 1.6. If (W,w) is an exact symplectic cobordism, then the first alternative in the
conclusions of Theorem can be improved to provide a contractible periodic Reeb orbit
inV_.

Remark 1.7. If the symplectic asphericity assumption on (W, w) is dropped, then one can still
conclude that (W,w) is symplectomorphic to a star-shaped region in (C2,wg) up to symplectic
blow up at finitely many points. We do not implement this here since the main point of this
work is to study knot types of periodic Reeb orbits, and not to prove yet another dynamical

characterization of symplectic 4-manifolds.

Proof of Theorem [I.1 using Theorem[I.4} The statement that a closed characteristic in 9
is symplectically slice in (€2, wp) if, and only if, it is a Hopf fiber, follows directly from Theo-
rem applied to (W,w) = (Q,wp).

A source of symplectically null-homologous transverse links are the transverse intersections
of a complex curve in C? with the round 3-sphere. Using results of Micallef and White [38] we
can perturb the complex structure to an almost complex structure, and the curve to a pseudo-
holomorphic curve with only transverse double points. These can be swapped for genus using
a standard trick, and we thus get an embedded symplectic surface spanning the link. Such
links are examples of what are known as transverse C-links. The general definition allows for
transverse intersections of a complex curve with a strictly pseudo-convex 3-sphere bounding
a Stein 4-ball in C2, see Definition 4.74 in [41]. But according to Proposition 4.75 in [41],
it was observed by Boileau and Orevkov in [6] that results of Eliashberg [9] imply that all
transverse C-links can be realized as intersections of complex curves with the round 3-sphere.
Moreover, Rudolph proved in [40] that every so-called quasipositive link is smoothly isotopic
to a transverse C-link, and therefore smoothly isotopic to a symplectically null-homologous
link. The converse is proved in [6], namely, every transverse C-link is quasipositive or, more
generally, every symplectically null-homologous link on the boundary of a symplectic 4-ball

is quasipositive.

The upshot is that a smooth link in S® is smoothly isotopic to a symplectically null-
homologous transverse link in (5%, &) if, and only if, the link is quasipositive. One is then
led to find symplectically slice knots by finding quasipositive knots with slice genus 0. Since
it is conceivable that a knot could be spanned in the 4-ball by a symplectic surface with
genus bigger than the slice genus, we need one more ingredient: a result by Gadgil and

Kulkarni [13] asserting that the symplectic surface minimizes genus on its relative homology
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class. Examples of quasipositive slice knots can be spotted in Rolfsen’s knot table [39]: 89,
9467 10140 and 10155. O
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2. PROOF OF THEOREM [L.4]

2.1. Symplectic manifolds with contact-type boundary. Let (IW,w) be a compact sym-
plectic 4-manifold. Assume that there exists a Liouville vector field Y defined on a neighbor-
hood of V' = W transverse to V. The primitive @ = iyw of w near V pulls back to a contact
form A on V under the inclusion map V < W. Then V splits into V = VT UV ™, where Y
points outward along V' and points inward along V~. The associated contact structure is
denoted by & = ker A C TV. We call (W,w) a symplectic cobordism that is convez at (VT,\)

and concave at (V7,\).

Let ¢!, denote the (local) flow of Y, and with € > 0 small enough consider diffeomorphisms
(1) O (=6, 0] x VT = UT O™ :[0,e) x VT = U d*(a,p) = % (p)

onto neighborhoods U* of V* in W. One can show that (®¥)*a = e®)\, where here we abuse
notation and write A for the pull-back of A under the projection R x V' — V. The symplectic

form gets represented by
O*w =d(e’N) = e*(da AN+ dN).

The symplectic completion of (W, w) is the symplectic manifold (W,w) where W is defined as

(2) W= (W U (=&, 400) x VT L (—00,¢) x V_) / ~
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where points are identified according to

&t (a,p) eUT ~ (a,p) € (—,0] x VT ® (a,p) €U ~ (a,p) €[0,e) x V™
and the symplectic form w is defined as

w=won W, W =d(e”\) on (—&,+00) x VT and on (—o0,e) x V™~
Later it will be needed to consider the compactification
(3) We = W U {400} x VT U {~o00} x V™

where the end [0, +00) x VT is compactified to [0, +oc] x V1 and, similarly, the end (—o0, 0] x
V'~ is compactified to [—00,0] x V.

Finally we construct symplectic forms @, on W, parametrized by b > 0. These will be used
later to define areas of pseudo-holomorphic curves in W. For each b > 0 consider a function
¢f :]0,+00) — [1,+00) such that (¢;) > 0, ¢; agrees with e® near 0, and ¢; (a) — €® as
a — 4o0. Define ¢, : (—o0,0] — (0,1] by ¢, (a) = (¢; (—a))~*. It follows that ¢, agrees
with e® near 0, (¢;)' > 0, ¢, (a) — e™® as a — —oo. Define @, by

w on W
(4) @y = d(¢; ) on [0,+00) x V*
d(¢, A) on (—o0,0] x VT

according to (2)).

2.2. Periodic Reeb orbits. The Reeb vector field X, of A is uniquely determined by
ix,d\ = 0, ix, A = 1. Let us fix a marked point on every periodic trajectory of the flow
of X. This flow is called the Reeb flow and is denoted here by ¢!. By a periodic Reeb orbit
we mean a pair P = (z,T) where z : R — V is a periodic Reeb trajectory such that z(0) is
the marked point, and 7" > 0 is a period, not necessarily the primitive one. The set of periodic
orbits will be denoted by P. If Ty > 0 is the primitive period of x then k = T/Tj € N is called
the multiplicity of P. The contact form A is said to be nondegenerate if dqu\x(O) :€2(0) = €a(0)
does not have eigenvalue 1 for all P = (z,T) € P.

We assume in the rest of this paper that A is nondegenerate since it suffices to prove
Theorem [I.4] in this case.
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2.3. Asymptotic operators. Associated to any periodic Reeb orbit P = (z,7) and any
d\-compatible complex structure J : £ — ¢ there is an unbounded operator on L?(x(T-)*¢)

n= J(=Vin+TV,X3)

where V is a symmetric connection on T'V and V; denotes the associated covariant derivative
along the loop t € R/Z + x(T't). This is called the asymptotic operator, which turns out
not to depend on the choice of V. It is self-adjoint when L?(z(7T-)*¢) is equipped with the

inner-product

(n,¢) = dA(z(Tt))(n(t), J (2(Tt))C(E)) dt

R/Z
Its spectrum is discrete, consists of eigenvalues whose geometric and algebraic multiplicities
coincide, accumulate at +00. Since A is nondegenerate, 0 is not an eigenvalue of the asymptotic

operators associated to all pairs (P, J).

2.4. Conley-Zehnder indices. The eigenvectors of the asymptotic operator associated to
any (P = (z,T),J) are nowhere vanishing sections of z(7-)*¢ since these solve linear ODEs.
Hence they have well-defined winding numbers with respect to a dA-symplectic trivialization
o of z(T-)*¢. The winding number is independent of the choice of eigenvector of a given
eigenvalue. This allows us to talk about the winding number wind, () of an eigenvalue v.
For every k € Z there are precisely two eigenvalues (counted with multiplicity) satisfying
wind, = k and, moreover, 11 < v = wind,(r1) < wind,(r2). Given any § € R we set

<6
o

a2 (P) = min {wind, (v) | v eigenvalue, v > §}

Pos(P) = az’(P) — a3’ (P)

g

a;’(P) = max {wind,(v) | v eigenvalue, v < ¢}

These numbers do not depend on J. Finally we consider the constrained Conley-Zehnder

index
(5) CZ)(P) = 205°(P) + pos(P)

Moreover, two trivializations have a relative winding number and the associated Conley-

Zehnder indices differ by twice the relative winding number.

If Dy is a capping disk for the periodic Reeb orbit Py = (zg,Tp) in VT, then there is a unique
(up to homotopy) d\-symplectic trivializing frame o of xo(7p-)*¢ that can be completed with
{Y, X} on 0Dy to a global w-symplectic trivializing frame of TW along Dy. The Conley-
Zehnder index of Py relative to Dy is defined to be CZY(Py).
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2.5. Pseudo-holomorphic curves. Choose a d\-compatible complex structure J on £. Fol-

lowing Hofer [16], we define an almost complex structure JonRxV by
(6) J: 04— Xy Je=J

where X and £ are seen as R-invariant objects in Rx V. Then J is R-invariant and compatible
with any symplectic form d(¢(a)\) where ¢,¢' > 0. In particular, it is compatible with
d(e®)). Consider a closed Riemann surface (S, ), a finite set I' € S and a J-holomorphic

map u = (a,u): (S\T,j) = (R x V,J) satisfying a finite-energy condition

0< E(u) = sup/ wrd(pA) < o0
¢ Ja\r

where the supremum is taken over the set of ¢ : R — [0, 1] satisfying ¢/ > 0. The number
E(u) is called the Hofer energy. The points of T are called punctures. A puncture z € T’
is called positive or negative if a(w) — +oo or a(w) — —oo when w — z, respectively. It
is called remowvable if limsup |a(w)| < co when w — z. It turns out that every puncture is
positive, negative or removable, and that u can be smoothly extended across a removable

puncture; see |16].

Remark 2.1 (Holomorphic polar coordinates). Let z € I" and let K be a conformal disk centred
at z, i.e. there is a biholomorphism ¢ : (K, j,z) — (D, 4,0). Then K\{z} admits positive holo-
morphic polar coordinates (s,t) € [0, +00) x R/Z defined by (s,t) =~ o' (e=27(+%)) "and neg-
ative holomorphic polar coordinates (s,t) € (—oo, 0] x R/Z defined by (s,t) ~ ¢~ (e27(s+i1)),

Under the standing assumption that X is nondegenerate we have:

Theorem 2.2 (HWZ [19]). Suppose that z € T' is a nonremovable puncture, and (s,t) are
positive holomorphic polar coordinates at z. There exists P = (x,T) € P and d € R such that
u(s,t) = x(eTt +d) in C*(R/Z,V) as s — +o00, where € = £1 is the sign of the puncture.

The orbit P is called the asymptotic limit of w at z. Results by HWZ [19], further refined
in 43|, explain that the asymptotic behaviour of a finite-energy surface at a nonremovable
puncture can be described in terms of asymptotic operators. To explain this point we need
to introduce some notation. Let P = (z,7T) € P and Ty > 0 be the primitive period of z.
Denote the coordinates on R/Z x D by (¥, z = x1 +ixz2), and set ag = d+x1dza. A Martinet

tube for P is a diffeomorphism

U:NSR/ZxD

defined on a smooth compact neighborhood N of z(R) such that:
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(MT1) ¥(x(Tp9)) = (9,0) for all ¥ € R/Z.
(MT2) Ay = ¥*(fag), where f: R/Z x D — (0,+00) is smooth and satisfies f(1,0) = T,
df (¢,0) = 0 for all ¥ € R/Z.

Let uw = (a,u) : (S,T,j) = (R x V,J) be a finite-energy surface, and z € I be a nonre-
movable puncture where @ is asymptotic to P = (z,T). Let (s,t) be positive or negative
holomorphic polar coordinates at z according to whether z is a positive or negative puncture.
We may assume, without loss of generality, that u(s,0) — z(0) as |s| = +o00. Fix any Mar-
tinet tube ¥ : N — R/Z x D for P, let so > 0 be such that |s| > sop = u(s,t) € N, and denote
(9(s,t), z(s,t)) = U(u(s,t)) when |s| > sp.

Theorem 2.3 (HWZ (19|, Siefring [43]). Let € = 1 be the sign of the puncture z and k € N
be the multiplicity of P. Either z(s,t) vanishes identically, or there is r > 0 and an eigenvalue
v of the asymptotic operator associated to (P,J) such that the following holds. There exists
c € R such that

lim €| DPa(s,t) — Ts — ]| =0 vD? = 9P o

[s]| =400
and Zf’l§ 1s a lift of ¥ then there exists d € R such that

lim | DP[d(s,t) —kt]] =0 VD’ = 9P
|s| =400
The eigenvalue v satisfies ev < 0, and there ezists an eigenvector e(t) of v and a C-valued
smooth function R(s,t) defined for |s| > so such that
z(s,t) = e”* (é(t) + R(s,t)) ‘ ‘lim ¢'Fl|DPR(s,t)| =0  vD® =99
S|——+00

where (0,€(t)) = d¥| 1y - e(t)-

Remark 2.4. If z(s,t) does not vanish identically then we say that @ has a nontrivial asymp-
totic behaviour at z. In this case we call v and e(t) the associated asymptotic eigenvalue and

eigenvector, respectively. Otherwise w is said to have trivial asymptotic behaviour at z.

Consider almost complex structures J on W that are w-compatible on W, and agree with an
R-invariant .J as in (6) on [0, +00) x VT U(—00,0] x V™. It follows that J is w-compatible. As
in [16], [7] we look at a closed Riemann surface (S, j), a finite set I' C S and a J-holomorphic
map @ : (S\T,5) — (W, J) satisfying a finite-energy condition

0< E(u) :/ w'w + sup w*d(pN)

a1 (W) ¢ /al([o,+oo)xv+)

+/ wrd(pN) < o0
a1((—00,0)x V=)
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where the supremum is taken over the set of smooth ¢ : R — [0, 1] satisfying ¢’ > 0. The
finite-energy condition implies that punctures are either removable or they behave like the
nonremovable punctures explained before. If (s,t) are positive holomorphic polar coordinates
at a positive puncture z € T' then (s, t) € [0,4+00) x VT when s > 1, and if one writes
u = (a,u) for s > 1 then a(s,t) — +o0o0 as s — +o0o. There is a similar behaviour at
negative punctures, we leave details to the reader. Moreover, if A is nondegenerate then there
is an asymptotic limit P at a nonremovable puncture, and all the conclusions of Theorem [2.3]
hold. In particular, we can talk about nontrivial versus trivial asymptotic behaviour and

asymptotic eigenvalues as in Remark

2.6. Fast planes and wind,,. Denote by (C = CU{oo}, ) the Riemann sphere, and consider
a finite-energy plane @ : (C,4) — (W,®) with a positive puncture at co. Then

@(C\ Br(0)) C [0,400) x VT

when R > 0 is large enough. Hence, we can write & = (a, ) in components on C\ Br(0) and

get an inclusion of vector bundles

(ulc\BR(0)) € C (m(C\BR(O))*TW

We can choose a trivializing d\-symplectic frame {e1, e2} of (u|c\ pj(0))*€ such that the frame
{04, Xz, €1,e2} extends to a trivializing w-symplectic frame of u*T'W. This frame is unique
up to homotopy. Let the asymptotic limit of @ at oo be P = (x,T). If |z] > 1 then we can
write u(z) = (a(z),u(z)) € [0,400) in components and assume, without loss of generality,
that u(R) — z(0) as R — 4o0. Using the asymptotic behavior we may further assume, up
to homotopy, that the frame {ej,es} along the loop u(Re™) converges to a dA-symplectic
frame o of z(T-)*¢ as R — +oo. The resulting frame o is determined by @ up to homotopy,

and we shall say that it is aligned with u. We denote
(7) CZ(u) = CZy(P)

where o is aligned with w.

To define winde, (w) we follow |20]. If w has nontrivial asymptotic behavior at oo, e(t) is the
asymptotic eigenvector given by Theorem and é(t) € C* is determined by representing
e(t) in a frame aligned with @, then we set
6(1) —0(0)

27

where 0(t) is a continuous choice of argument of é(t). If u has trivial asymptotic behaviour

windeo (u) = €z

at oo then we set winde () = —o0.
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The plane w is said to be fast if windo(u) < 1. Fast planes in symplectizations were
introduced in [25]. Theorem implies that if @ has nontrivial asymptotic behaviour, and if

v is the asymptotic eigenvalue, then
v <3 = winds (%) < a(P)

where ¢ is aligned with .

Finally, we need to recall invariants wind, and winds, introduced in [20] for a finite-energy
curve in (R x V¥, J ). Suppose that the domain is connected and the curve v = (b,v) is not a
(possibly branched) cover of a trivial cylinder. In this case the curve has nontrivial asymptotic
behaviour at every puncture; see Remark Choose a dA-symplectic trivializing frame of
v*€ that extends to a collection o of trivializing frames over the asymptotic limits. The set of
punctures splits as YU~ into positive and negative punctures, and for each z € I't we denote
by v, the asymptotic eigenvalue of v at the puncture z. Denote wind (v, z,0) = wind, (v,).
HWZ [20] define

(8) Windoo (7) = Y windw(7,2,0) = > wind (7, 2, 0)
zel't+ zel'—
9) wind, (?) = winde (V) — x + #0T + #I

where x is the Euler characteristic of the underlying closed Riemann surface. It is proved
in [20] that

(10) wind,(v) > 0 and wind,(v) = 0 = v is an immersion.

2.7. Fredholm indices and moduli spaces. For a given P € P we denote by
(11) MBP T

the set of equivalence classes of embedded fast finite-energy planes @ : (C,i) — (W, J) with a
positive puncture at co where it is asymptotic to P satisfying CZ(u) > 3. Here two such planes
up, uy are said to be equivalent if there exist A € C* and B € C such that ui(z) = uo(Az+ B).
An element of Mt(P,.J) represented by a plane & will be denoted by [u]. Similarly one can
consider M$t(P,.J) the set of equivalence classes of pairs (u,z) where @ : (C,i) — (W,.J)
is an embedded fast finite-energy plane with a positive puncture, satisfying CZ(u) > 3, and
z € C. Two pairs (uo, 20), (u1,21) are said to be equivalent if there exists (A, B) € C* x C
such that 4y (2z) = ug(Az + B) holds for all z € C, and that zg = Az + B.

We can set up a Fredholm theory for Mfst( P, .J) modeled on sections of the normal bundle,

using Sobolev spaces or Holder spaces. Consider an element of Mt(P,.J) represented by
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a fast embedded plane w. Ome can look at sections of the normal bundle of u(C) with
exponential decay faster than § < 0, where ¢ is placed precisely in the spectral gap between
eigenvalues of the asymptotic operator satisfying wind, = 1 and wind, = 2, where o is a
dA-symplectic trivialization of z(T-)*¢ aligned with u in the sense explained in § This is
possible precisely if CZ(u) = CZ%(P) > 3. Note that aS%(P) = 1. The Fredholm index of

the linearization Dy of 0 7 at u restricted to this space of sections is
(12) inds() = CZS(P) —1=3—-1=2.

Remark 2.5. The weight § < 0 will be different for two embedded fast planes asymptotic to P

that form a sphere where ¢; (TW,w) does not vanish.

An important consequence is that we have automatic transversality, i.e. Dy at an embedded
fast plane u is always a surjective Fredholm operator. This can be proved by an indirect
argument as follows. There is no loss of generality to deform the normal bundle so that it
coincides with u*¢ over C\ Bgr(0), R > 1. A global trivializing section of the normal bundle
then induces, up to homotopy, a dA-symplectic trivialization oy of xz(7T-)*¢ which winds +1
with respect to o. This means that wind,, (1) = wind,(u) — 1 for every eigenvalue p of the
asymptotic operator. Moreover, a nontrivial section ¢ € ker D; admits an asymptotic behavior
governed by an eigensection of the asymptotic operator associated to an eigenvalue v < §, see
Theorem 6.1 in [25] or Theorem A.1 in [43]. Hence, ¢ does not vanish near oo and the total
algebraic count of zeros of ¢ is equal to wind,, (v) = wind,(v) =1 < aS%(P)—1=1-1=0.
But the equation Dz = 0 allows us to use Carleman’s similarity principle to say that zeros
are isolated and count positively. The important conclusion that { never vanishes. Since
the Fredholm index is 2, we would find 3 linearly independent sections of the kernel if the
linearization is not surjective. But the normal bundle is two-dimensional, hence a nontrivial

linear combination of them would have to vanish at some point, contradiction.

The consequence of the above arguments and remarks is that ./\/lfaSt(P, J) is a smooth
manifold of dimension two when equipped with the topology inherited from the functional
analytic set-up used for the Fredholm theory, for any .J, provided X is nondegenerate up to
action T'. Similarly, Mst(P,.J) is a smooth manifold of dimension four, for any .J, provided

A is nondegenerate up to action 7.

Remark 2.6. It turns out that, under our standing assumption that A is nondegenerate,
the topologies on M™*(P,.J) and on M*(P,.J) inherited from the functional analytic set-
up used for the Fredholm theory coincides with the topology of C-convergence. There are

situations where this can be proved dropping the assumption that A is nondegenerate [26],]29].
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By the above remark and automatic transversality, it follows that for every J the space

Mt (P J) is a smooth 4-dimensional manifold equipped with a smooth evaluation map
(13) ev: MNP J) > W, ev(u, z] = u(z).

Remark 2.7. The map ev is a local diffeomorphism: this is a direct consequence of the facts
that planes in MﬁaSt(P, J) are embedded, and that sections in the kernel of the linearized
Cauchy-Riemann operator with the previously described exponential decay never vanish; see

the argument for this last claim above.

2.8. Intersection theory. Our first goal here is to prove the following statement.

Lemma 2.8. If [u], [0] belong to the same connected component of M@ (P, J) then u(C) N
0(C) # 0 if, and only if, [u] = [v].

The proof uses a weighted version of the intersection number from [42]. Let us fix e €
7o(W oo, {+00} x P) and denote by

MfaSt(P, j’ 6) c MfaSt(P, j)

the subset of planes representing e. The weight & < 0 is placed on the special spectral gap
of the asymptotic operator of (P,.J) as explained before, and can be taken the same for
all planes in M™t(P, J,e). Let 7 be any trivializing d\-symplectic frame of z(T-)*¢. If ¥
belongs to ./\/lfaSt(P, J,e) then we can push ¥ near its positive puncture in the direction of
T to obtain a map v” that does not intersect v near the puncture. More precisely, choose
the Martinet tube so that in coordinates (9,2 = x; + ix2) the frame {6%1, % along P
does not wind with respect to 7. Use positive holomorphic polar coordinates (s,t) at the
puncture to represent as v(s,t) as a map (a(s,t),9(s,t), z(s,t)). Then, with a nondecreasing
bump function 5 : R — [0, 1] supported on [sg, +00), so > 1, equal to 1 near +oo, define
" by U7 (s,t) = (a(s,t),9(s,t),z(s,t) + B(s)) near the puncture, and v” = v away from the

puncture. Finally we define
(14) Uxs 0 =int(T,07) + aS°(P)

for [u], [v] € M™t(P, J,e). Here int denotes the intersection number, where W is oriented by
wAw and the domains of @ and v™ carry the complex orientation. One checks that @ *sv does
not depend on the choice of 7. Note that % x5 v depends only on the corresponding classes
in M™t(P ] e). Arguing as in [42] one establishes the following lemma which summarizes

some of the main properties of this intersection number.
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Lemma 2.9. The number u x5 v is nonnegative and does not change when [ul, [v] vary con-
tinuously on M™@Y(P J e). Moreover, if [u],[0] € M3 (P,J,e) satisfy u(C) # v(C) and
w(C)Nv(C) #£ O then w5 v > 0.

Using the frame oy induced by a global trivializing frame of the normal bundle, one

computes for any 7 € M@t(P, ] )
(15) U s U = int(@,a°Y) + ag (P) =0+0=0
Lemma follows as a direct consequence of u x5 u = 0 and Lemma [2.9

Lemma 2.10. Let U, : (C,i) — (W,.J) be fast finite-energy planes asymptotic to a simply
covered periodic Reeb orbit P = (x,T), that define elements of M™%(P, J,e). Let o be a
(unique up to homotopy) d\-symplectic trivialization of x(T-)*¢ aligned with w, Yn. Let
I' € C be finite, and assume that u, converges in CP.(C\T) to a finite-energy map u :
(C\T,i) — (W,J) asymptotic to P at co. If u has a nontrivial asymptotic behavior at oo

with asymptotic eigenvalue v then wind,(v) < 1. In particular, if T' = 0 then u is fast plane.

Proof. Write iy, (s, t) instead of @, (e2"+™), and similarly (s, t) for s large enough. Let A/
be a small tubular neighborhood of x(R) in V. We can assume, with no loss of generality,
that o extends to a d\-symplectic trivializing frame of £|»s which we still denote by o. It
follows from a suitable application of the Monotonicity Lemma, Lemma 5.2 in [7] together

with results on cylinders with small contact area from [23] that there exists sp > 1 such that
un([s0, +00) X R/Z) C [0, 400) x N Vn, u([s0, +o0) x R/Z) C [0, +00) x N .

Write @, = (an, up) and @ = (a,u) in components, for s > sg. Let m¢ : TV — £ denote the
bundle projection along RX . From Theorem 2.3]it follows that if s; > s is fixed large enough
then ¢ (0su) does not vanish on [s1, +00) xR/Z and the winding number wind, (7¢(9su)(s1, -))
of t — m¢(Osu)(s1,t) in the frame o is equal to wind,(v). Since m¢(Osun) — me(Osu) in CFX,

we find ng such that if n > ng then 7¢(Osuy,) does not vanish on {s1} x R/Z and
windg (¢ (Osun)(s1, ) = windg (m¢(Osu) (51, -)) = wind,(v) .

Using o one can represent (s,t) — m¢(Osuy) by smooth maps ¢, : [so, +00) — C satisfying
a Cauchy-Riemann type equation. Carleman’s similarity principle implies that either (,
vanishes identically on (sg, +00) x R/Z, or its zeros are isolated and count positively. Since
s1 > so and (,(s1,-) does not vanish when n > ng we conclude that for every n > ng
the zeroes of (, on (sg,+00) x R/Z form a discrete set. If n > ng and u, has a trivial

asymptotic behaviour then ¢ (9s,) vanishes identically near the puncture, absurd. Hence
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Uy, has nontrivial asymptotic behaviour when n > ng. Moreover, by Theorem Cn(s,t) does
not vanish when s is large enough and for every n we have

lim wind(¢u(s,+)) = lim wind,(me(Osun)(s, ) = windg () -

s§—400 s—+400

Standard degree theory implies that wind, (vy,) — wind({,(s1,-)) > 0 is the algebraic count of

zeros of ¢, on [s1,400) x R/Z, i.e. wind,(m¢(Osun)(s1,-)) < windg () for all n > ng. Hence
n > ny = windy (v) < wind, (v,) < 1

as desired. OJ

Lemma 2.11. If [i,] € M®Y(P,J,e) is a sequence such that u, C:2 -converges to a plane
u, then u defines an element of MY (P, J e).

Proof. That u represents e follows from the convergence. Note that @ is somewhere injective
since its asymptotic limit P is simply covered. If @ has a critical point or a self-intersection
then we can invoke [38] to conclude that u,, is not embedded when n is large enough, absurd.
The somewhere injectivity of @ is crucial here. Hence w is embedded. By Lemma u is
fast. Thus u € M™Y(P, J e). O

2.9. SFT Compactness. The SFT compactness theorem from [7] is the generalization of
Gromov’s compactness theorem to curves with punctures. The first step in describing its
statement is a discussion of nodal curves in (W,@, J) or in (R x V,d(e*)), J). A nodal curve

in (W,w,J) is an equivalence class of tuples (u,S,5,I'+,T_, D), where

(S,7) is a (not necessarily connected) closed Riemann surface,

'} and I'_ are disjoint ordered finite subsets of S,

w: (S\(I'LUr'_),5) — (W,.J) is a finite-energy pseudo-holomorphic map with positive

punctures on I'y and negative punctures on I'_,
e D is a finite unordered set of pairwise disjoint unordered pairs of distinct points of
S\ (I'y UT_), such that if {z,w} € D then u(z) = u(w).

The pairs in D are called nodal pairs and, at times, we might also denote by D the subset of
S\ ('t UT'_) consisting of all points forming the nodal pairs. Two such tuples are declared

equivalent
(ﬂv Saja F+aF7>D) ~ (alaS,7j/>F/ 7F/—3D/)

if there exists a biholomorphism ¢ : (S, j) — (S’,5’) such that
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¢(T'+) =T, and ¢ defines order preserving maps I'y — I, ,
¢(D) = D' and ¢ maps pairs to pairs,
u=1u oo.

We may refer to ¢ simply as a reparametrization. Nodal curves in (R x V d(e®\), J ) are
defined in the same manner except that one needs to further quotient by the action of (R, +)
on the first component. In both cases equivalence classes will be denote by [w, S, j, '+, T, D].

The nodal curve is said to be smooth if D = 0.

A nodal curve [@, S, j,T'y,T'_, D] in (W, J) is stable if 2g,+ 1 > 3 holds for every connected

component S, C S such that u[g,\(r, ur_) is the constant map; here g, is the genus of S,
and p, is total number of punctures and nodal points in S,. For a nodal curve in (R x V, J )
stability is defined by further asking the existence of at least one connected component Sy C S

such that u So\('sur_) is not an unbranched cover of a trivial cylinder over a periodic orbit.

Remark 2.12. If (S,j) is a Riemann surface and z € S then the circle (7,5 \ 0)/Ry is
naturally induced with a metric (which makes it isometric to the standard R/27Z), and with
an orientation. We will refer to this circle as the blown up circle at z. The punctured surface
S\ {z} may be compactified to a surface with boundary obtained by adding a blown up circle

at z.

The next step is to consider the notion of a holomorphic building u of height k_|1|k,, with
k+ > 0. The building u is the equivalence class of tuples

Htm v <m<ir s APm}—k_<m<ki—1}

(i) wo = (o, So, jo, Fg_, I'° | Do) represents a nodal curve in (W, .J).

)
(ii) Ym > 1, Um = (Um, Sm, Jm, I, ™, Dyy,) represents a nodal curve in (R x vt J).
(ili) Vm < =1, Uy = (Um, Sms Jm, L7, T, Dyy,) represents a nodal curve in (R x V=, J).
)

(iv) The ®,, are orientation reversing isometries

Dy, U (T25m \ 0)/R4 — U (T=Sm+1\ 0)/Ry
ZEFT ZEFT+1
that cover order preserving bijections I''!" — ™! and such that the following holds.
When m # 0 write %y, = (am, um). Add to Sy, \ (I'PUT™) the blown-up circles {C, =
(T>S™\0)/Ry }zer, at the positive punctures to obtain a surface with boundary Sm.

The asymptotic behavior allows for the projected map u,, to be uniquely extended
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to a map U, on Sm. Analogously, when m < k4, add to Sp41 \ (FT+1 UT™) the
blown-up circles at the negative punctures I'"™*! to obtain a surface S™+1 and an
extended map Uy,41. Then it is required that %, 110 ®,, = U, on C, for every z € '},

and every —k_ <m < ky — 1.

Two such collections {{tm}, {®m}}, {{u,},{®],}} are declared equivalent if they have the
same height, u), represents the same nodal curve as u,, for each m, and the corresponding
reparameterizations intertwine the orientation reversing isometries @, and @/ . Moreover,
synchronized reordering of the intermediate punctures also define equivalent buildings. The

data {®,,} induces a decoration at the punctures between levels.

Let u be a holomorphic building of height k_|1|k represented by {{um},{®m}} as de-
scribed above. Fix an arbitrary choice r of orientation reversing isometries between blown up
circles of points in nodal pairs in U, D,,. The data r is called a decoration at nodal pairs.

Consider the surface
S = (UpBom) / ~

where blown up circles at points of nodal pairs are identified by r, and ®,,, is used to identify
blown up circles at I'"" with blown up circles at ™! The interior circles of S™" correspond-
ing to blown up circles at nodal pairs or at punctures between levels will be called special
circles. Note that Sy, \ (Il UT™ U D,,) can be seen as an open subset of S"". By the

asymptotic behavior and conditions (i)-(iv) we can define a continuous map
(16) Fu:S" = Wy

that agrees with @y on Sp\ (T UT'® UDy), with (4+00, ) on Sy, \ (T'PUI™UD,,) when m > 1,
and with (—o0,uy,) on Sy, \ (I UT™ U D,,) when m < —1. Here we wrote y, = (am, Um)
for m # 0.

The final step in this discussion is the description of SFT convergence of a sequence C,, =
[Ons By in, 27, Z™, 0] of connected smooth curves in (W, .J) with energy and genus bounds.
Such a sequence is said to SF'T converge to a building u as above if there exists a sequence

of diffeomorphisms
R e Y

and finite ordered sets K,, C X, K C U, Sy, such that the following holds:

(a) K, is disjoint from the punctures in X,,.

(b) K is disjoint from the all punctures and nodal points in Uy, S,.
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If gy, is the genus of ¥, and v, = #(Z} U Z" U K,,) then 2g, + v, > 3. If S, is a
connect component of U,,S,, with genus g, and v, is the total number of punctures,
nodal points and points of K in S, then 2¢g, + v, > 3.

n, maps blown up circles at F]r’ onto blown up circles at Z! covering an order
preserving bijection F’f — Z'', blown up circles at I~ onto blown up circles at

. : e —k :
Z™ covering an order preserving bijection I'_"~ — Z", and maps K — K,, in an

order-preserving manner.
Let hy be the hyperbolic metric on 3, \ (Z} U Z" U K,,) induced by 4,, and h be the
hyperbolic metric on Uy, Sy, \ (I UT™ U Dy, U K) induced by {4, }. Then ¢y h, — h
in the C2-topology on Uy, Sy, \ (I'P UT™ U Dy, U K), where the latter is seen as an
open subset of S™". Moreover, y,, maps special circles to closed geodesics of h,.
Fe, — Fy in CY) where here C,, is seen as a building of height 0[1/0.
The following holds:
(+) If m > 1 then there exists ¢, , — +00 such that the following holds. For every
compact set X C I'"" UI'"™ U Dy, and every € > 0 there exists nx . such that if
n > nx. then v, o v, (X) C [0,+00) X VT and
Sup TR © Up, © @ (2) — Cmn — am(2)| < €
zeX
where mr denotes projection onto the R-component.
(=) If m < —1 then there exists ¢, , — —00 such that the following holds. For every
compact set X C I UI'"™ U D,,, and every € > 0 there exists nx . such that if
n > ny. then v, o v, (X) C (—00,0] x V™ and

SUp |TR © Up, © @ (2) — Cmop — am(2)] < e.
z€X

We also need to consider buildings and SFT convergence for curves in (R x VT, d(e*X), J).

(g

The notion of nodal curves in this setting was already explained above. As for the buildings:

one looks at collections

Htm br<m<iy  APmt1<m<i, -1}

as above where the 1, represent nodal curves in (R x V't d(e®)), J). In this case it is simpler
to consider Fy, defined from the V*-components of the {@,,}, so that F takes values on V7.

Conditions (a)-(f) remain unchanged, (g) is replaced by:

For each m then there exists ¢, ,, € R such that the following holds. For every compact

set X C TP U™ U D,, and every € > 0 there exists nx  such that if n > nx . then

SU [ © T © @ (2) — o — A (2)] < &
zeX
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where mr denotes projection onto the R-component.

Since A is nondegenerate, it follows from the SFT compactness theorem |[7] that any se-
quence of smooth curves intersecting a given compact subset of W, with energy and genus

bounds, contains a subsequence that SF'T converges to a building as described above.

2.10. SFT-limits of fast planes. Let P = (z,7T") be a simply covered periodic Reeb orbit
in V. Consider a sequence v, : (C,4) — (W, .J) of embedded fast planes in (W, .J) asymptotic
to P, satisfying CZ(?,) > 3, defining curves in the same connected component of M™2st(P, .J).
The goal here is to describe properties of the limiting holomorphic building of an SFT-
convergent subsequence of these planes, assuming that they go through a fixed compact set
EcWw.

Remark 2.13. If P! = (2/,T') is a closed Reeb orbit in V* then from now on we identify
(W, 2'(R)) ~ 7o(W oo, {+00} x 2'(R)) via an isomorphism e + ¢é defined as follows. If e
is represented by U : D — W such that U(e?*™) C 2/(R) then é is represented by a map
U from (D U [0, 400] x R/Z)/[??™ ~ (0,t)] to W defined by U(z) = U(z) if z € D, and
Uls,t) = (s,U(e™™)) if (s,t) € [0,+00] x R/Z. Tt is simple to show that e ~— & is an

isomorphism, and to write a formula for its inverse.

Let e € mo(W,z(R)) map to the A-positive generator of m(z(R)) by the boundary map.
Let w, € C and assume that ev[v,, w,] € E for all n. Note that [0, w,] € MP'(P,.J). Up to
selecting a subsequence, it can be assumed that these planes SFT-converge to a holomorphic
building u of height k_|1|ky
(17) Ch = [On, CU {00}, {0}, 0,0 =3 u

and that F, represents the class e for every n.

For any fixed b > 0 the symplectic area

(18) /C oA

is independent of n, where wp is the symplectic form defined as in .

Lemma 2.14. Suppose ev[ty, z,] — (+00,p) € W for some sequence z, € C. If p € z(R)
then ki > 1.

Lemma 2.15. If ki > 1 then there exists a periodic Reeb orbit P' = (z/,T") in V' such that
T' < T, P spans a capping disk D' in W that does not intersect some disk in class e, and
the Conley-Zehnder index of P’ relative to D' is < 2.
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Lemma 2.16. Let [ug, So, jo, 'y, Ty, Do] be the nodal curve at the level zero of u. If Dy # 0,

ky = k_ = 0 then there exists non-constant J-sphere.

Lemma 2.17. If k_ > 1 then there exists a periodic Reeb orbit P, = (x4, Ty) in (V7,\)
satisfying

(19) T, < ¢ / TT — / BT
C So\(Fg ul')

for every b > 0.

Proof of Lemma[2.14. Assume, by contradiction, that ky = 0. By SFT convergence, specifi-

cally from condition (f), we have
(+00,p) € Fu(S™")

from where it follows that Fyy (S™")N({+00} x V1) = {400} xx(R) and p € z(R), absurd. [

Proof of Lemma[2.15. Let c1,...,c, be the special circles of S™" corresponding to the neg-
ative punctures Ff of u;. Note that S™" is a disk and each ¢; is contained in its interior.
Note also that the c; necessarily bound pairwise disjoint closed disks D; in the interior of
ST since otherwise there would be a curve in some level m > 1 without positive punctures,

which is impossible.

Consider the building u; on R x V* formed by the positive levels of u, and denote by 7

the restriction of r to the nodal pairs in the positive levels. Then, by construction, we have
SUu+TH — GUT\ (Dl U---U Dh) Fy|gusry = {400} X Fu,

since Fy, takes values on V*. The top level @y, consists of one finite-energy sphere with
precisely one positive puncture {z;} = I‘Z; where it is asymptotic to P. Hence uy, does not
cover a trivial cylinder and has nontrivial asymptotic behaviour at its punctures. Let o be a
d\-symplectic trivialization of z(T")*¢ aligned with the v,,; this is independent of n since all

U, represent the same class e in mo (W, z(R)).

The inequality windeo (U, , 24,0) < winde (v5,) < 1 follows as in the proof of Lemma
Moreover, o extends to a dA-symplectic trivialization of (Fy, )*§ still denoted by o. We
shall now prove that for every m > 1 the curve u,, has a negative puncture z;, where it is
asymptotic to a closed Reeb orbit P* satisfying CZS(P*) < 2. We start with the top level,

and let (1,...,(n be the negative punctures of u, , and P; be the asymptotic limit of uy,
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at ¢j. If CZY(P;) > 3 then windeo (U, ,(j,0) > 2. Arguing by contradiction, assume that
CZ2%(P;) > 3 for all j. Then

0 < Windw(ﬂk+) = Windm(ﬁk+) —2+N+1

N
<N = windw (g, ,¢,0) <N —2N = —N
j=1

from where it follows that N = 0, absurd. Hence we find the desired ZZ+ € F,;. Now one can
proceed inductively, estimating as above. In fact, all connected components w of all levels
Um, m > 1, have at most one positive puncture (. Assume that the asymptotic limit Py of
w at (4 satisfies CZS.(P+) < 2. If w has trivial asymptotic behavior at (; then one can use
Carleman’s similarity principle to conclude that w is a (possibly branched) cover of a trivial
cylinder. In this case P and the various asymptotic limits P_ at the negative punctures
cover the same primitive Reeb orbit, the covering multiplicity of P, being at least equal to
that of all P_. It follows, in this case, that CZ2(P_) < 2 at all negative punctures. If w has
nontrivial asymptotic behavior at ¢, then CZ%(P,) < 2 implies that winds(w,(;,0) < 1

and one can argue as we did for the top level.

By the above argument we can assume, without loss of generality, that the asymptotic limit
P’ = (2/,T") of 4 at the negative puncture corresponding to c¢; satisfies CZ2(P’) < 2. Tt
follows that P’ is geometrically distinct from P. Consider the disk D C S™" spanned by c;.
Note that D is contained in the interior of the larger disk S™" which is naturally oriented by
the conformal structures of the levels of u. The orientation induced on D orients its boundary
c1. With this orientation, F}, maps ¢; to {+o0o} x 2/(R) along the Reeb flow. If we remove
special circles from the interior of D then we are left with an open subset of S™" equal to the
union of a certain collection V of connected components of Uy,,<oSm \ (I}, UT,, U Dyy,); the
reason why we do not see connected components of L,;,>1 Sy, \ (I, UT,,, U Dy;,) is because this
would force some curve on a level m > 1 to have no positive punctures, absurd. Connected
components in V contained in levels m < —1 are mapped by Fy to {—oo} x V7, hence their
images under Iy, do not touch the images of the v,. If the image of ug intersects the image
of some v, then, by stability and positivity of intersections, for all n large enough the image
of v, intersects the image of v,,. Here use the fact that to no connected component of its
domain g restricts a reparametrization of the vy,,: for action reasons, every asymptotic limit
at a positive puncture of uy has action strictly less than T' (the d\-area of the top level is
positive). This is a contradiction to Lemma and shows that Fy|p defines a capping

disk for P’ in W, that does not intersect the image of ¥,,, for any n. By construction, the
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Conley-Zehnder index of P’ relative to Fy|p is CZY(P') < 2. The inequality 77 < T follows
from Stokes theorem and the fact that the d\-area of the top level is positive. O

Proof of Lemma[2.16. By assumption the entire limiting building u is equal to the nodal curve
at level zero. One can describe this nodal curve as a plane II asymptotic to the simply covered
Reeb orbit P, and several J-spheres S, ..., S in W connected by nodes. By Lemma 11

is a fast plane. O

Proof of Lemma[2.17. Let c1,...,c, be the special circles of S™" corresponding to the positive
punctures Ffl of u_1. Note that S™" is a disk oriented by the conformal structures of the
levels of u. Each ¢; is contained in the interior of S™". If (W,w) is exact then these circles
necessarily bound pairwise disjoint disks in S™", but if not then we might see nested circles:
this situation can only arise if there are curves without positive punctures in the level zero of

u that are not connected via a nodal pair to any other curve with a positive puncture.

In any case, choose j, € {1,...,h} with the following property: c¢;, corresponds to a

negative puncture of a component of g that either has a positive puncture, or has no positive
punctures but is connected to a component of ug with a positive puncture by nodal pairs.
Note that in the latter case there is exactly one such nodal pair due to the fact that S™" has
genus zero and that (W, w) is symplectically aspherical. Such j, must exist, since otherwise
up has no positive puncture, contradicting the fact that the entire building is the SFT-limit
of a sequence of planes in W with one positive puncture. Let P, = (x4, T%) be the asymptotic

limit of %y at the negative puncture corresponding to cj, .

Consider the disk D, in the interior of S"" bounded by c¢;,. Consider the set J, consisting
of those j € {1,..., h} such that j # j., ¢; C D, and the disk in S™" spanned by c; intersects
So\ (Tg UTy U Dy). The set J, might be empty. Let D be the set obtained by removing
from D, the interiors of the disks spanned by the {c;}jes,. The crucial property for us is
that D/ contains no circle c;j with j € J, in its interior. When D, inherits the orientation
from S™" and ¢;, is oriented as the boundary of D,, the map Fy, maps ¢;, to {—oo} X z,(R)
along the Reeb flow. If we remove special circles from the interior of D/, then we are left with
an open subset of S™" equal to the union of a certain collection V of connected components
of Up<—1Sm \ ()t UT;, U Dy,); the reason why we do not see connected components of
So\ (Tg UTy U D) is because this would force some circle ¢; with j € Ji to be contained in
the interior of D’, but these do not exist. Denote by Y € V — m(Y) € {—k_,...,—1} the

function which assigns the level of u corresponding to Y € V.
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For every m # 0 we write in components U, = (am,uy,). By the description of SFT

convergence, and by Stokes theorem, we know that

VyWp = =¢b o dA
/C ’ Z /m\(rjnur

m>1

+ / U, + e ? / X
So\(I'gury) 0 Z S\ (T UT')

m<—1

and that
T, < Z/ Wy d

with strict inequality when J, # (). One can now estimate
PTo<e Y / u;d)\g/’q};wb - / U@
me—1 Sm\(Thul';, C So\(T'gury)

as desired. 0

2.11. The symplectic capping disk as a finite-energy plane. Let P = (z,7) be a
simply covered periodic Reeb orbit on V*, and let D be a symplectic slicing disk for z(R).
Consider e € mo(W, x(R)) the class represented by D. For the following statement we identify
homotopy classes according to Remark

Lemma 2.18. There exist J and v € M®@Y(P, J, e) such that windu (V) = —oc.

Proof. Consider a Martinet tube ¥ : N — R/Z x D for P defined on a small compact
neighborhood N of z(R). As before, if (¥,z = x; + iz2) denote coordinates on R/Z x D,
then the contact form is represented on R/Z x D via ¥ as fap, where ag = d¥ + x1dx2, and
f:R/ZxD — (0,+00) is identically equal to Ty on R/Z x {0}, and df vanishes identically on
R/Z x {0}. We denote by X = X (9, z) the associated representation of the Reeb vector field

via W. In this proof we assume, for simplicity and without loss of generality, that Ty = 1.

Using ¥ we can represent the end of the symplectic disk D in suitable coordinates (r,t) as

an embedding
u=(a,u):[1—€6l] xR/Z — (—00,0] x R/Z x D
satisfying

i) a(r,t) =r—1, u(r,t) = (t,Ao(r,t)) with Ag(1,¢) = 0.
ii) d(e” fap) (Opu, Oyu) > 0 on [1 — €, 1] x R/Z.



ON THE KNOT TYPES OF PERIODIC REEB ORBITS 25

Here (r,t) denote the coordinates on [1 —¢€,1] x R/Z, and 7 denotes the R-component (first
component) in the product (—oo,0] x R/Z x D. It follows from i) that

d(e” fao)lz (Oru, D)

= 0Ora (fapgly - Ou) — Ora (faly - Oru) + d(fa)|w(Oru, Opu)

=14+40(1-r)
which proves d,a(1,t) > 0 Vt. Denote M = R/Z x D and M = R x D its universal covering
with coordinates still denoted by (¢, z). We lift the map @ to amap @ : [l —¢,1] xR — R x M
denoted in the same manner. The coordinates on the universal covering [1 —¢,1] x R of
[1 —€,1] x R/Z are still denoted (r,t). We also lift f to a smooth function on M which is
1-periodic in 9, still denoted by f. The M—component u of u has components u = (t, Ag(r, 1))
denoted just as before. Note that Ay and Vu are 1-periodic in t. Perhaps after shrinking e

we have

(20) inf Ora(r,t) >0 and inf ap - (Grup,0) > 0.

(r,t) (r,t)

For each positive § < € consider a smooth function ¢5 : R — [0, 1] satisfying ¢s(r) = 1
when 7 lies on a neighborhood of (—oo,1 — 0], ¢s(r) = 0 when 7 lies on a neighborhood of
[1,400), and [|¢}]ls < 2/6. Consider U5 : [1 —€,1] x R — R x M defined by

(21) Us = (a,vs) = (r — 1,v5) where v5:= (t,ps5(r)Ao(r,t)).

Claim. If § is small enough then d(e”\) (9,75, 0:vs5) > 0 on [1 — €, 1] x R.

Proof of the Claim. Note that vs —u = (0,0, (¢5 — 1)Ao), hence
~ ~ 2
(22) [Vs(r,t) = Vii(r, £)] < [|¢5lloo [Ao(r, )]+ [[VAollo < <|A0(r, )] + VAol

Since Ag(1,t) = 0:Ao(1,t) = 0 Vt we use Taylor’s formula to find ¢; > 0 independent of §
such that

(23) |Ao(r, )] + |0 Ao(r, t)| < er(1—1).
If r >1— 6 then 2671 < 2(1 —r)~! and we get from this and that

V5, t) — Vii(r, £)] < §c1(1 — )+ [VAolloe < 261+ [VAoloo when r > 1 — .
Since vs(r,t) = u(r,t) when r < 1 —§, we conclude that

(24) Vs lloo < IV5 = Villoo + [Vl < €2

for some ¢y independent of 6.
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Note that ||Agllcc < 1. There exists ¢z > 0 such that
(25) |df 9,2y - w| < ez lz] [|w]| and |f(J,2)] <3 Y(9,2) € R x D, Yw € R3.
Note also that
(26) o,z - w| < (1+ |z))[[w] < 2[w] vz, w.
If r > 1 — ¢ we can estimate at the point (r,t)
[(df A ag) (Orvs, Opvs)| < |df - Orvs||ag - Dyvs| + |df - Dpus|| o - Orvs]
< 2¢3|Aol |0pvs]| [|Opvs |
(27) 2
< 2cice3(l — )
< 20103035
where (23), ([24), and were used. If 7 > 1 — 0 we estimate at the point (r,t)
| fdog (Orvs, Dpvs)| = [fdaw (Orvs, (1, d5(r)0cAo))]

< ¢3]| Vs 00|01 Ao
(28)
< creaes(l —r)

S 0162635

where , , and were used again. Combining with we find ¢4 > 0

independent of § such that
(29) |d(fag) (Orvs, Orvs)| < a0 at the point (r,t) € (1 —d,1] x R.
Consider m = inf{f(6,2)} > 0. Finally we estimate
(dr A fag) (0r0s, OrUs)
= Ora (fao - Opvs) — dea (fao - Oyvs)
= (fao - (1,0) + fao - (0, 950:A0))
>m (1 —2e3]0:A))
>m—cs(1—r)
for some c¢5 > 0 independent of §. It follows that

(30) (dt A fag) (0rv5,0:05) > m — 56 whenever r>1— 6.

Combining with we get

(31) (dr A fao+d(fap)) (Orvs, Ovs) > m — (cg +¢5)0 if r>1—04.
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Since v5 = u when 7 < 1 — ¢ we conclude, using ii), that
(dr A fag +d(foo)) (0,05, 0:0s) > 0

on [1 —¢,1] x R. The claim is proved.

The arguments so far show that @ can be modified to a smooth symplectic map vs which
can be concatenated to the trivial cylinder in a smooth way. This allows us to find J such
that the resulting embedded symplectic surface (disk) is J-holomorphic, yielding the desired
element of Mt (P, J, e) satisfying wind,, = —oo. O

2.12. Concluding the proof of Theorem Recall that we may work under the as-

sumption that A is nondegenerate.

Consider the projection Mt(P,.J) — MMt (P J) obtained by forgetting the marked
point. This is a surjective submersion. Let e be the homotopy class induced by the symplectic
slicing disk D for P. We define M!**(P, J e) to be the pre-image of M™(P J e) by the
forgetful map above. By Lemma MIY(P ] e) # (). Tt was already observed before that

(32) ev: MBYP T e) > W

is a smooth submersion; see Remark Hence its image is open and non-empty in W.
Lemma implies that is injective.

To prove surjectivity of we will show that ev(Mst(P, J,e)) is closed in W. To this
end suppose that [y, 2,] € MY(P J e) and that ev[v,, z,] converges to a point ¢ € W.
Up to choice of a subsequence, we may assume that [0, CU{oo}, i, {oo}, 0, 0] SFT-converges
to a building u of height k_|1|k;. We claim that k. = 0. If not then Lemma implies
that V,' is not dynamically convex in W relative to (P, D). If k_ > 1 then Lemma
provides a periodic Reeb orbit P, = (x4, Ty) in V'~ such that T satisfies for all b > 0.
The monotonicity lemma implies that the term faal(w) uswp has a positive lower bound
independent of b, where g is the map representing the level zero of u. Taking the limit as
b— 0" we get T, < T. This is one of the alternatives in Theorem and we are now left
with the case k_ = 0. In this case, u consists of a single nodal curve uy. Lemma tells
us that there is a J-holomorphic sphere if %y has nodal points, but such spheres are excluded
since (W,w) is aspherical. Hence % is a finite-energy plane asymptotic to P. It is the C -
limit of a suitable reparametrization of the planes in the sequence v,, which we still denote
by v,. Lemma implies that g represents a curve in M@*(P,.J e). SFT convergence
implies that [0y, 2,] converges in M5Y(P,J, e) to [tig, ¢] for some ¢ € C. Hence ev([ug, (] = q.



28 ON THE KNOT TYPES OF PERIODIC REEB ORBITS

If Vi is a connected component of V', V¥ = Vi, then fix ¢ in (0, 4+00) x V;© and, using
the above, find [0, z] € M®5¢(P, J, e) such that ev[v, z] = ¢. Hence we get J-holomorphic disk
with boundary on {0} x Vf’ through ¢, violating the maximum principle for the R-component
of this disk. It follows that VT = V.

Now take a sequence q, € W satisfying ¢, — (+00,p) on W, with p € Vi \ z(R). We
claim that if ev[vy,, z,] = g then there is ng such that n > ng = 0,(C) C [0, +00) x V. If
not then we could apply Lemma to conclude that the sequence [0, CU{o0}, i, {oo}, 0, 0]
SET-converges to a building with k; > 0, and Lemma|2.15|contradicts the assumed dynamical
convexity of (V;7, \) in W relative to (P, D). We now claim that if n > ng and @, = (b, vs,)
then v, is an immersion transverse to X. This follows since v,,, with n > ng, defines a plane
in (R x V*,J) and we can estimate 0 < wind(7,,) = winde(7,,) — 1 < 0. Moreover, v, is
injective and does not intersect z(R). This is a consequence of v, *5 (¢ - v,,) = 0 for all ¢ > 0,
where ¢ - U, denotes R-translation by ¢ > 0. Hence v,, determines an embedded disk for P
in VT transverse to the Reeb vector field. It follows that P is unknotted and has self-linking

number —1.

At this point it is simple to show that (V1 ker \) ~ (S3,&y). Above we showed that there
exists [0] € M™Y(P, ], e) satisfying 9(C) C [0,+00) x V*. Up to translating down we may
assume that minb(C) € [0,1] where & = (b,v). The space of planes in M@ (P J e) that
are contained in [0, +00) x V1 and whose images intersect [0,1] x VT is then non-empty. It
is also compact since a building obtained as the SFT-limit of a sequence of such planes has
height 0]1]k; and its zero level is contained in [0, 4o00) x VT, so Lemma tells us that
k4 = 0, and the zero level has no spheres because J is compatible with an exact symplectic
form on [0, +00) x V. Hence the limiting building is a plane in ([0,40c) x V*,.J), which
by Lemma belongs to M™t(P,.J €). As explained before, such a plane projects to an
embedded spanning disk for P in VT transverse to the flow. The compactness result just
proved allows us to obtain an S!'-family of such spanning disks. Moreover, any two such
planes v; = (bj,v;), j € {0,1}, satisfy either vy(C) = v1(C) or vo(C) N vy (C) = 0; in fact, if
vo(C) Nw1(C) # O then, up to relabeling, we find ¢ > 0 such that vo(C) N (c-v1)(C) # 0, hence
¢ =0 and [v] = [?1] by Lemma[2.8| and vy(C) = v;(C). It follows that the projections to V*
of the planes in the S'-family form an open book with disk-like pages supporting (V ', ker \).
Thus (VT ker \) =~ (53, &).

Finally we need to prove that (W,w) is symplectomorphic to a star-shaped domain in
(C2%,wp). Since (V = V7T, ker\) is contactomorphic to (S3,&y), we can find a star-shaped
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domain  C C?, € > 0 small and a symplectomorphism
¢ : ([—€,+00) x VT d(e*N)) — ([—¢, +00) x 99, d(e)p)).

Here \g = t*ayg, where ¢ : 99 — C? is the inclusion map and o is the standard Liouville form
on C?. Note that ((—$, +00) x 89, d(e")g)) is symplectomorphic to (C*\ K,wp) for a compact
set K C 2\09Q. In fact, K can be taken as a suitable scaling of . In view of the definition of
the symplectic completion (W,w), see §. $,+0o0) x VT can be seen as the complement
in W of some compact subset of W\@W. Hence, there is a suitable compact set K/ C W\ oW
such that ¢ can be used to define a symplectomorphism (W \ K’,@) — (C%\ K,wp). We can
now apply Theorem 9.4.2 from [37] to conclude that (W,©) is symplectomorphic to (C2,wp)

via a symplectomorphism that sends W to .

Remark 2.19. Another interesting consequence from the above argument is that the support-
ing open book with binding P in (VF,€) = (S%,&) has pages that are global surfaces of

section for the flow. This follows from arguments as in [25].
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