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ABSTRACT. This paper is about using pseudo-holomorphic curves to study the circular planar
restricted three-body problem. The main result states that for mass ratios sufficiently close to
% and energies slightly above the first Lagrange value, the flow on the regularized component
RP3#RP3 of the energy surface admits a finite energy foliation with three binding orbits, namely
two retrograde orbits around the primaries and the Lyapunov orbit in the neck region about the
first Lagrange point. This foliation explains the numerically observed homoclinic orbits to the
Lyapunov orbits. The critical energy surface is proved to satisfy the strict convexity condition
in regularizing elliptic coordinates. This allows for the application of a general abstract result
for Reeb vector fields on holed lens spaces, concerning the existence of finite energy foliations
with prescribed binding orbits. As a by-product of the convex analysis, Birkhoff’s retrograde
orbit conjecture is proved for mass ratios sufficiently close to % and all energies below the first
Lagrange value. This conjecture states that the retrograde orbit bounds a disk-like global surface

of section on each regularized component RP3 of the energy surface.
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1. INTRODUCTION

This paper studies the circular planar restricted three-body problem for energies up to slightly
above the first Lagrange value. The main goal is to find finite energy foliations as introduced by
Hofer, Wysocki, and Zehnder in [37] so that the binding is formed by Birkhoff’s retrograde orbits
around the primaries and the Lyapunov orbit near the first Lagrange point. These foliations,
called 3 — 2 — 3 foliations, imply the existence of infinitely many periodic orbits and infinitely
many homoclinic orbits to the Lyapunov orbit in the regularized RP3#RP3-component of the
energy surface. The existence of homoclinic orbits to the Lyapunov orbits near the first Lagrange
point leads to important applications in the space mission design, see [51].

Before introducing the restricted three-body problem and stating the main results, we briefly
explain the abstract setting. Consider a Reeb vector field on a contact three-manifold M with
non-empty boundary M. Assume that each boundary component & C M consists of a regular
two-sphere containing a hyperbolic periodic orbit P, C S, the so-called Lyapunov orbit. The
subscript 2 in the notation refers to the Conley-Zehnder index of the Lyapunov orbit. The vector
field is transverse and points towards opposite directions along the hemispheres of &\ P». The
interior of M contains a special periodic orbit Ps, referred to as the retrograde orbit. The notation
means that the generalized Conley-Zehnder index of a certain contractible cover of Pj is at least
3. This is a common scenario in classical Hamiltonian systems near critical energy surfaces that
contain saddle-center equilibrium points. For energies slightly above the critical value, a subset M
of the energy surface has boundary components in the neck region about the equilibrium points
as above and is referred to as a chamber. One may ask whether a chamber M contains periodic
orbits or homoclinic and heteroclinic orbits connecting the Lyapunov orbits. In the circular planar
restricted three-body problem, for energies slightly above the first Lagrange value, the regularized
component near the primaries is diffeomorphic to the connected sum RP3#RP? and the chamber
M around each primary is diffeomorphic to the real projective three-space RP? = L(2,1) with an
open ball removed. Each chamber contains a retrograde orbit around the corresponding primary.
Thus, the boundary M of each chamber consists of a single component containing the Lyapunov
orbit near the first Lagrange point. In our most general setting, M is a lens space L(p,q) with
finitely many balls removed, and equipped with the standard contact structure.

This paper presents necessary and sufficient conditions for the Lyapunov orbits in M and the
retrograde orbit in M \ OM to form the binding of a finite energy foliation whose leaves are as
simple as possible, i.e., planes asymptotic to the retrograde orbit and cylinders connecting the
retrograde orbit to each Lyapunov orbit.

We shall apply the main abstract results to the circular planar restricted three-body problem
for mass ratios sufficiently close to % and energies slightly above the first Lagrange value. The
regularized chamber around each primary fits the abstract assumptions due to some convexity
estimates on the critical energy surface. More precisely, all periodic orbits that might obstruct the
existence of the desired foliation do not exist. In this situation, the chamber around each primary
admits a finite energy foliation, which determines a 3 — 2 — 3 foliation for RP3#RP3.

Our methods consist of studying pseudo-holomorphic curves in the symplectization of the energy
surface. The pseudo-holomorphic curves germinate from a Bishop family of pseudo-holomorphic
disks with special boundary conditions as in [29]. The theory of pseudo-holomorphic curves in
symplectizations was fundamentally developed by Hofer, Wysocki, and Zehnder in [29] [30, 3T}, 32]
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33, 34, 35 B0l B7], and was first applied to the restricted three-body problem in the seminal paper

.

1.1. The setting. Let M = M3 be a smooth three-manifold diffeomorphic to a lens space L(p, q)
with finitely many disjoint regular open balls removed. Recall that p > ¢ > 1 are relatively prime
and L(p,q) is the quotient of S3 = {(z1,22) € C x C : |21]® + |22|?> = 1} by the free Z,-action
generated by (21, z2) > (€2™/P 2y, e2™4/P ).

The boundary components S; C OM,i = 1,...,1, are diffeomorphic to the two-sphere. Let «
be a contact form on M defining the standard contact structure of L(p, ¢). Assume that the Reeb
vector field R of a admits a hyperbolic periodic orbit P> ; C S; for each 7, and R is transverse and
points towards opposite directions along the hemispheres of S; \ P2 ;. The notation indicates that
the Conley-Zehnder index of P ; is 2 in a natural frame of the contact structure £ = ker o along
Si. Let P; € M\ OM be a p-unknotted periodic orbit with self-liking number —1/p, i.e., there
exists an immersed closed disk D < M \ dM whose interior is embedded, and whose boundary
p-covers P3. The disk D is called a p-disk for P3. The characteristic foliation (7D N &)+ has a
unique singularity in the interior of D, which is positive and nicely elliptic. Denote by Pg the
j-cover of P3 for every positive integer j, and let P be the set of periodic orbits P3, P> 1,..., P,
called binding orbits. The following definition is based on [I7], 63].

Definition 1.1. A weakly convex foliation F of M adapted to o and P is a singular foliation
of M whose singular set is formed by UpepP, and M\ UPE'])P is foliated by regular surfaces
transverse to the Reeb vector ﬁeld R. FEach regular leaf Y M \ UpepP of F is a pmperly
embedded punctured two-sphere Y = CP! \T, 0 < #T' < 4+00. At each puncture z € T, Y s
asymptotic to some Py,; € P or to PY. This orbzt, denoted P,, is called the asymptotic limit of
Y at z. The closure ¥ C M of S is an immersion. We call the puncture z € I' positive if the
boundary orientation of P, induced by the orientation of ¥ coincides with the flow orientation.
The puncture z is called negative, otherwise. Here, M is oriented by a A da > 0 and Y is co-
oriented by R. The asymptotic limits of > are distinct, and precisely one puncture of ¥ is positive.
Ifi is asymptotic to Py at z € T, then z is positive and all other punctures in T'\ {z} are negative
and asymptotic to distinct Py ;. If Py is not an asymptotic limit of 3, then ¥ = CP! \ {oo} and
Y C OM is a hemisphere of S; \ Po; for some j. The hemispheres of S;\ Pa;,i = 1,...1, are
reqular leaves of F.

The weakly convex foliations F we shall construct are projections to M of finite energy foliations
F in the symplectization R x M. The leaves of F are the image of embedded finite energy J-
holomorphic curves associated with almost complex structures J on R x M adapted to «. For
generic choices of J, we shall construct F whose projection F to M is as simple as possible, i.e.,
the regular leaves that are asymptotic to P} at a positive puncture have at most one negative
puncture asymptotic to some P, ;. This means that the regular leaves are planes asymptotic
to Pj, cylinders connecting P at the positive puncture to P> ; at the negative puncture, and
planes projecting to the hemispheres of S; \ Pz ; for each j. The planes asymptotic to P} lie in
a one-parameter family of planes with the same asymptotic limit, and there exist precisely [ such
families. Also, there exists a unique rigid cylinder from P} to each P, ;,j = 1,...,l. The rigid
cylinders separate the [ families of planes asymptotic to P}, i.e., each family planes asymptotic
to PY breaks at each of its ends onto a rigid cylinder connecting P} to P, ; and a hemisphere of
Sj\ Poj.

The R-invariant almost complex structure J on the symplectization R x M preserves the contact
structure & = ker o, where it is da-compatible, and sends J, to the Reeb vector field R. In this
way, J is compatible with the symplectic form d(e®a) on R x M, where a is the R-coordinate. The
leaves of F are the image of .J-holomorphic curves @ = (a,u) : CP'\T — R x M, 0 < #I' < 400,
with finite Hofer’s energy 0 < E(@) < 4o00. A J-holomorphic cylinder whose image is R x P
for some periodic orbit P, is called a trivial cylinder over P. An embedded J-holomorphic curve
whose projection to M is also embedded is called nicely embedded [69, [70} [72].
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Definition 1.2. A finite energy foliation F adapted to o, P and J is a regular foliation F of
R x M whose leaves are trivial cylinders over the binding orbits or the image of nicely embedded
J-holomorphic curves with uniformly bounded energies. The projection of F to M is a weakly
convez foliation F adapted to o and P as in Definition[I.1 The trivial cylinders over the binding
orbits are leaves of F, and F +a € F for every F € F and a € R.

1.2. The main abstract results. Let us assume that the contact form o on M is the restriction
to M of a contact form on L(p,q) equipped with the standard tight contact structure § = &, 4.
Recall that &, , is induced by the Z,-invariant contact form Ao on S* given by the restriction of the
Liouville form Z?Zl(éjdzj — z;dz;) to S* C C x C. Denote by 7,4 : S* — L(p,q) the natural
projection. The projections to L(p,q) of S* x {0} and {0} x S! are p-unknotted, denoted K; and
K, respectively. The disk ui(z) = (z,/1 — |2]?),2 € D, projects to a p-disk for K;. Similarly,
uz(z) = (/1 —12/%,2),z € D, projects to a p-disk for Ky. We view [K;] = 1 as a generator of
m1(L(p,q)) =~ Z,. In that case, [Ks] = ¢*, where g¢* = 1 mod p. A local transverse section to
K determines p distinct branches of u; approaching K;. Along the positive period of K7, the
branches are permuted by —q, where the orientation is induced by da. The number —q is called
the monodromy of K;. It does not depend on the p-disk for K;. Similarly, one checks that the
monodromy of K5 is —¢*, see [40, Lemma 3.5]. Notice that ¢* =1 and [K;] = [K3] in the case of
L(2,1) =RP3.

The lift of P; to S under the natural projection Tp,q 18 & Zp-symmetric trivial knot K C S3 =
L(1,1) transverse to the standard tight contact structure £ = &; ;1 which is transversely isotopic
to the Hopf fiber S x {0} C S3. We say that a periodic orbit P’ € M\ (OM U P) is linked with
P; if the algebraic intersection number P’ - D € Z does not vanish, i.e., link(P’, P}) # 0, where D
is a p-disk for P3. Otherwise, we say that P’ is unlinked with Pj. Let

S(D.a) = /D \dal.

We call §(D, o) the |dal-area of D. Notice that if D is transverse to the Reeb vector field, then
S(D, a) coincides with the action of PY. The set of periodic orbits of « is denoted by P(«), and
an element of P(«) is a pair P = (z,T), where x : R/TZ satisfies ¢ = R(z), and T > 0 is a period
of z. Two such pairs are identified if they have the same image and the same period. Iterates
of P are denoted by PP = (z,pT) € P(a) for every p € N. The action of P coincides with its
period and is denoted by A(P) = [, o = f]R/TZ z*a =T. The rotation number of a contractible
periodic orbit P € P(«) is denoted by p(P). This is a well-defined real number computed in a
global symplectic frame of & — S3. The Lyapunov orbits are contractible and satisfy p(Pj) =1
for every j. We always assume that the contractible p-th iterate of the retrograde orbit P3 satisfies
p(P5) > 1.

We assume the existence of an almost complex structure J on R x M so that the hemispheres
of S;\ P, ;,j7 =1,...,1, are projections of nicely embedded J-holomorphic planes asymptotic to
P, ;. Such planes are unique and they always exist in our concrete applications.

The main abstract result establishes sufficient conditions for the existence of a finite energy
foliation projecting to a weakly convex foliation adapted to o and P.

Theorem 1.3. Assume that M, «, P and J satisfy the above conditions. Let P’ C P(«) be the
set of contractible periodic orbits P' C M\ (OM U P3) satisfying

(1.1) p(P)=1, link(P,P})=0 and A(P")<S(D,a).

If P = (), then there exists a finite energy foliation F adapted to o, P, and J' whose leaves are
planes and cylinders. In particular, the projection F of F to M is a weakly convex foliation.
Here, the almost complex structure J' is C°°-arbitrarily close to J and coincides with J on a

neighborhood of OM.

The construction of a finite energy foliation as in Theorem starts from a Bishop family of
J-holomorphic disks with boundary on {0} x D, where D is a p-disk for P; whose characteristic
foliation has a unique singularity, which is nicely elliptic. This analysis was first introduced by
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Hofer in [29] in his proof of the Weinstein conjecture for overtwisted contact three-manifolds,
and later developed by Hofer, Wysocki, and Zehnder in [31] B2]. The boundary of the disks in
the Bishop family is radially monotone from the nicely elliptic singularity towards the boundary
0D = P{. We may first assume that the contact form « is nondegenerate and J satisfies some
generic conditions to be specified later. If no bubbling-off occurs before the boundary of the
disks in the Bishop family approaches PY, then the family ultimately converges in the SFT sense
to a building containing J-holomorphic curves asymptotic to orbits in P, in particular to PY.
More precisely, discarding the trivial half-cylinder over PY at the highest level of the building,
the SFT-limit of the Bishop family is either a nicely embedded J-holomorphic plane asymptotic
to P} or a cylinder asymptotic to P at the positive puncture and to some P, ; at the negative
puncture, plus a J-holomorphic plane projecting to a hemisphere of S; \ P» ;. By construction,
the leading eigenvector of the curve approaching P} is the correct one, and such curves are part
of the desired foliation. Moreover, these curves are enough to construct the remaining foliation,
obtained as a direct application of the weighted Fredholm theory, the gluing theorem for regular
curves, and the SFT compactness theorem. Now, if the Bishop family admits bubbling-off before
reaching 9D = P, then the compactness theorem implies that the SFT-limit of the Bishop family
consists of a half-cylinder with the same boundary conditions on {0} x D and asymptotic to
some P, ; at the negative puncture, plus a J-holomorphic plane projecting to a hemisphere of
S; \ P, for some j. In this case, gluing the half-cylinder with the other hemisphere of Sy ; \ Ps ;,
one obtains a new Bishop family of disks whose boundary is even closer to P§. This monotone
continuation eventually leads to a sequence of J-holomorphic disks whose boundary converges to
PP, reducing the construction of the desired foliation to the previous case. For this strategy to
work, two ingredients are crucial. First, J may need to be perturbed to avoid non-regular curves in
the compactness argument, allowing the application of Fredholm theory and the gluing theorem.
Second, the uniqueness of disks in the Bishop family, as discussed in [3], ensures that the Bishop
family obtained by gluing the half-cylinder with the opposite rigid plane is monotone, i.e., the
boundary of the disks continues outside of those in the previous family and thus gets closer to PY.

One of the immediate dynamical consequences of a finite energy foliation, as in Theorem [1.3] is
the existence of a homoclinic or a heteroclinic orbit to the Lyapunov orbit with the largest action.

Corollary 1.4. Under the conditions of Theorem @ let Py ; be the Lyapunov orbit with the
largest action. Then Ps ; admits a homoclinic orbit, or a heteroclinic orbit to some P,k # j.
In particular, if | =1, then the Lyapunov orbit Po 1 C OM admits a homoclinic orbit in M.

1.3. The main application. We explain how Theorem [I.3] applies to the circular planar re-
stricted three-body problem for a range of mass ratios and energies slightly above the first La-
grange value and how the 3 — 2 — 3 foliation implies the existence of infinitely many homoclinic
orbits to the Lyapunov orbit.

Consider two massive bodies, called primaries, moving along circular trajectories about their
fixed center of mass. The massless satellite moves on the same plane as the primaries and is
attracted by them according to Newton’s gravitational law. The Hamiltonian describing the
motion of the satellite in a rotating system that fixes the primaries is given in canonical coordinates
by

1 . n 1—1p 1 5
) — 1 2 - —_ = .

Here, ¢ = g1 +ig2 € C\ {—p,1 — p} is the position of the satellite, and p = p; + ips € C is the
momentum. The mass ratio 0 < p < 1 is the mass of the primary at 1 — 4 € C, and 1 — p is the
mass of the primary at —u € C. The primaries are called the moon and the earth, respectively.
For each 0 < o < 1, H = H,, has precisely five critical points I;(u),...,l5(n), called Lagrange
points, with increasing critical values Li(u) < Lo(p) < Ls(p) < La(p) = Ls(p) called Lagrange
values. Notice that Lo(1/2) = L3(1/2) and I3,l3 are interchanged as p crosses 1/2. The La-
grange points are the rest points of the Hamiltonian flow of H,,, and I;(x) projects between the
earth and the moon. For E < L;(u), the energy surface H !(FE) has three regular components
e M g» M, g, the first two components project to punctured disk-like domains about the
earth and the moon, respectively, and the third one projects to a neighborhood of co. If the
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energy E coincides with the first Lagrange value Lq(p), then MZ,Ll(u) and MZle(“) touch each
other at I;(u), a common singularity. Their projections to the g-plane touch each other at a
common boundary singularity. For energies Li(u) < E < La(u), the energy surface has a regular
component MZ#Em corresponding to the connected sum of My p and MJ'g. It projects to a
twice-punctured disk-like domain about the earth and the moon.

The components projecting near the primaries are unbounded in the p-direction and contain
trajectories that collide with the primaries in finite time. We regularize collisions using elliptic
coordinates. The regularized Hamiltonian in symplectic coordinates (y, z) € R? x (R x R/27Z) has
the form H,, p = Ly + F(2)]* + V,,g(z), where F(z) = (fi(22), f2(z1)) and V,, g(z) are smooth
functions on R xR /277, with V,, g smoothly depending on (11, £). Up to a time reparametrization,
the dynamics on H,, L(E) corresponds to the dynamics on H . }3(0) under a double covering map
with antipodal symmetry. The components of the energy surface quotiented by the antipodal
symmetry now become smooth compact submanifolds

S22 ME g, M = RP?, VE < Ly(p),

(1.2)
S'x §2 % M = RP*#RP?, VL (1) < E < Ly(p).

For simplicity, we keep the same notation for the regularized components.

In [I], Albers, Frauenfelder, van Koert, and Paternain observed that for energies up to slightly
above Ly (u), these regularized energy surfaces have contact type. In particular, the methods of
pseudo-holomorphic curves apply. For energies below Lq(u), the flow is equivalent to a Reeb flow
on RP? equipped with the universally tight contact structure &y. Birkhoff [6] used the shooting
method to prove the existence of a retrograde orbit, i.e., a periodic orbit projecting to a simple
closed curve around the primary moving opposite to the rotating system. He raised the question
of whether the retrograde orbit bounds a disk-like global surface of section.

As mentioned above, for every E slightly above Li(u), the regularized flow on Me#Em is equiva-
lent to the Reeb flow of a contact form o = «, g on the contact connected sum (RP?’#RP?’, Eo#&o).
In the neck region of the connected sum, there exists a low action index-2 hyperbolic orbit
P, = P, E, called the Lyapunov orbit. This orbit bounds a pair of closed disks whose inte-
rior is transverse to the flow. They form a regular two-sphere S which separates Mz#g into two
components whose closures, denoted by M7, 5 and MJP' g, are contactomorphic to (RP3, &) with
an open ball removed. One can prove using the same argument as Birkhoff that the interiors of
M; p and ML”  Dossess retrograde orbits Pg and P[", respectively, see Theorem They are
2-unknotted, and their self-linking number is —1/2. This means that they admit 2-disks whose
characteristic foliation has a unique nicely elliptic singularity.

We aim at finding a weakly convex foliation on Me#m whose binding is formed by the Lyapunov
orbit P» and the retrograde orbits Ps, P3". Firstly, We observe that there is no canonical choice of
a separating two-sphere S containing the Lyapunov orbit P,. We fix an almost complex structure
J on the symplectization of Me#m and require that the hemispheres of S are projections of J-
holomorphic planes asymptotic to P,. We also require them to be in the neck region and whose
distance to I1(u) tend to 0 as B — Ly(u)™

The following proposition generalizes the results in [I]. It provides a choice of « and J, and
thus gives a precise definition of the separating two-sphere S as the projection of J-holomorphic
curves, so that S is arbitrarily close to {1 (p).

Theorem 1.5. Let 0 < pog < 1. Then for every (u, E) sufficiently close to (uo, L1(po)), with
E > Li(p), the following statements hold:

(i) There exists a contact form a = o, g = iywo on Mu#m = RP3#RP? whose Reeb flow
is equivalent to the regularized Hamiltonian flow. Here, Y =Y, g is a Liouville vector
field, defined on a neighborhood of /\/le#m in R* and transverse to Me#m Also, wy is the
canonical symplectic form Y. dp; A dqz

(ii) There exists a compatible almost complex structure J = J, g on R x /\/le#m adapted to o
that admits a pair of J-holomorphic planes asymptotic to P g through opposzte directions.
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The closure of their projections to MZ#; form a regular two-sphere S = S,, g containing
P . Furthermore, dist(S,11(p)) — 0 as E — Ly(u)t uniformly in p.

(iii) There erists a contact form a = o, 1, (u) = Y, 1, (W0 0N the sphere-like singular subset
Me = M \ {li(w)} so that the contact forms a, g in (i) converge in C52(ME)

to ayr,(u as E — Li(p )t uniformly in p. The same conclusion holds for M =

M;T,Ll(u) \ {ll(ﬂ)}~

We consider the contact form « on ME# and the almost complex structure J on R x Mp#m
as in Theorem (1.5 The regular two- sphere S separates M u# into two compact subsets M
and MJl'p, calle chambers. As mentioned before, each chamber has at least one retrograde orblt
We fix them and denote them by Ps and Pg", respectively. We have P, C S = OM¢ B = = oM™ B
Pg C M, p\Sand P" C MPp\S.

We aim to prove the existence of finite energy foliations projecting to special weakly convex
foliations of MJ, p#M' g, called 3 — 2 — 3 foliations.

Definition 1.6. Consider the following terminology from [15]:
(i) A 2—3 foliation of M, g adapted to o, J and P® = {P$, Py}, is a weakly convex foliation
¢ of M;E adapted to a and P¢. The regular leaves consist of the hemispheres Uy, Us in
S\ P> g, a one-parameter family of planes asymptotic to (P$)? and a rigid cylinder with
a positive end at (P$)? and a negative end at Py. They are transverse to the flow and
consist of projections to M5, p of a finite energy foliation in the symplectization.
(ii) A 2 —3 foliation F™ of M}, adapted to v, J and P™ = {P§", P2} is defined similarly
to (i).
(iil) If 2 — 3 foliations F¢ and F™ of M, g and M7 g exist, respectively, then F¢U F™ is
called a 3 — 2 — 3 foliation of Mz#Em adapted to o, J and P = {P5, PJ", P»}.

e m
sk wE

FIGUure 1.1. The 3 — 2 — 3 foliation on the regularized component Me#m =

RP3#RP? for mass ratios close to 1/2 and energies slightly above the ﬁrst La-
grange value. The rigid cylinders (bold blue) connect the double cover of the
retrograde orbits Pg and P3" to the Lyapunov orbit P, near the first Lagrange
point. The rigid planes asymptotic to P, (bold red) separate M€ pop and M p.

The orbit P§ or P3" in the definition above can be replaced with any 2-unknotted periodic
orbit with self-linking number —1/2. As already mentioned, Birkhoff [6] proved the existence of a
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retrograde orbit in MY, 5 for energies below Li(p). A simple argument allows one to extend this
result for energies up to slightly above Ly (u).

Theorem 1.7. Fiz 0 < po < 1 and Ey < L1(uo). The following statements hold for every (u, E)
sufficiently close to (uo, Eg):

i) There exists a continuous family of retrograde orbits P§ = PS C M€ ., whose projec-
Y g 3 3., E wE J
tion to the g-plane is a simple closed curve rotating counterclockwise around the Farth.
(ii) Py, p— P, g nC> as (1, E) = (po, Eo). In particular, the action of P§ is uniformly
bounded, and there exists a continuous family of 2-disks D =Dy g C My, g for P§ whose

|dae|-area S(D, «) is uniformly bounded.

A similar result holds for Mg

The existence of a retrograde orbit, as in Theorem follows from the usual Birkhoff’s shooting
method. Indeed, this method considers trajectories issuing perpendicularly from certain open
intervals in the g;-axis containing the primary as an endpoint. Such intervals are shown to be
uniformly away from Iy (1) as E — Lq(u) and, moreover, they parametrize two non-self-intersecting
real-analytic curves in the interior of the rectangle @ := [—7/2,7/2] x [-M, 0], for some M > 0.
At the endpoints, these curves tend to Q). An intersection point between these curves correspond
to a retrograde orbit. A topological crossing of such curves always exists and persists under small
perturbations of (u, F), thus giving at least one family of retrograde orbits near (19, Ep) as in the
statement.

Even though we denote the retrograde orbit by Ps, we have not yet established that the index
of its contractible double cover is greater than or equal to 3. We, therefore, introduce the following
definitions.

Definition 1.8. Let 0 < pp < 1, and let @ = «, 1, () be the contact form on the regularized critical
subset M7, 1,y as in Theorem (m)

(i) We say that /\/l; Li(w) is dynamically convex if the Conley-Zehnder index of every con-
tractible periodic orbit of « is at least 3.

(ii) Let M/i,Ll(u) C R* be a component of the lift of the regularized critical subset MZ,Ll(u)

to R*, which double covers Mz Li(p) In particular, Mvi L) 1s a topological three-sphere
with antipodal symmetry and two opposite saddle-center singularities S+ corresponding to
the first Lagrange point l1(u). We say that MZ Liw) 8 strictly convex if ./\/lz Li(w) bounds

a conver subset of R* and all sectional curvatures of ML \ {S+} are positive. A

similar definition holds for MTLl(u)‘

Before stating the main criterion for the existence of 3 — 2 — 3 foliations for energies slightly
above the first Lagrange value, we prove a crucial estimate on the index of periodic orbits, which
states that periodic orbits passing sufficiently close to {1(u) must have a high Conley-Zehnder
index.

Theorem 1.9. Let 0 < g < 1. Given N € N, there exists an open neighborhood Uy C R? x (R x
R/27Z) of the saddle-center singularities Sx (o), corresponding to the first Lagrange point 11 (uo),
such that for every (u, E) sufficiently close to (po, L1(po)), the following holds: if P’ C PAI;}E(O)

is a periodic orbit that is not a cover of the Lyapunov orbit near l1(u) and P' NUx # 0, then
ucz(Pl) > N.

The following theorem states that the regularized component MZ#Em admits a 3—2— 3 foliation

for E slightly above Li(u) provided some sufficient conditions on the regularized critical subsets
M 1y Mt are satisfied.

Theorem 1.10. Let 0 < po < 1, and let o« = ayp, J = Jyp and S = OM;, p = OM'p
be defined for (p, E) sufficiently close to (po, L1(po)), with E > Ly(k), as in Theorem[1.5 Let
Pg =Py, 5 CM; g be the continuous family of retrograde orbits and D = D, g be the 2-disk for
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Pt as given in Theorem-for ., E) sufficiently close to (po, L1(po)). Let Py C Py, L4 (o))
be the set of contractible periodic orbits P’ C Muo La (s0) \ (P20, L1 (1o) Y P§ oL 1(uo)) satisfying

p(P) =1, link(P’ ’P37M0,L1(uo)) =0 and A(P)<S(D 110, L1 (10) 7 Opro, L (ko)) -

Assume that “CZ((P?f,uo,Ll(ﬂo))Q) > 3 and Py = 0. Then the following assertions hold for every
(1, E) sufficiently close to (po, L1(po)), with E > Ly (p):
(i) The index-2 Lyapunov orbit P, C S is the unique contractible periodic orbit unlinked with
Py in M{, p, with rotation number 1 and action < S(D, a).

(ii) M, i admits a 2 — 3 foliation whose binding orbits are the retrograde orbit P5 and the
Lyapunov orbit Py around the first Lagrange point Iy ().

(iii) M, g admits infinitely many periodic orbits and infinitely many homoclinic orbits to the
Lyapunov orbit near 11 (). Moreover, if the branches in MZ of the stable and unstable
manifolds of the Lyapunov orbit do not coincide, then the topological entropy of the flow
on M,  is positive.

A similar statement holds for M. Moreover, if the conditions above are satisfied for both

MZO,Ll(uo and M#O Ly (po)’ then the regularized component MZ#Em = RP3#RP3 admits a 3—2—3

foliation whose binding orbits are P$, P{™ and Py, for every (u, E) sufficiently close to (10, L1(10)),

Notice that if Mu Ly (o) is dynamically convex, i.e. all of its contractible periodic orbits have
index > 3, then the conclusions in Theorem hold for M, ;; for every (i, E), sufficiently close
to (po, L1(po)), with E > Li(p). Furthermore, the proposition below shows that Theorem [1.10]
also holds if Mu Lo (o) 18 strictly convex.

Proposition 1.11. Let 0 < pu < 1. If the regularized singular subset MZ Ly () is strictly convez,
then it is dynamically convezx, i.e. the index of every contractible periodic orbit in Mz ) 15 at
least 3. A similar statement holds for /\/lZfL ()"

Li(p

This proposition is essentlally proved in [36] and [54] Indeed, consider any contractible periodic
orbit P in M7 ; ., and let P denote a lift of P to Mu L) C R? x (R x R/27Z). The index of

P then depends only on the Hamiltonian near P. One may change the Hamiltonian away from P

so that P lies in a strictly convex regular hypersurface, see [26]. Hence, its index is at least 3.
Our main result in the circular planar restricted three-body problem asserts that for every p

sufficiently close to 1/2 and every energy slightly above the first critical value, the regularized

dynamics on ./\/lz#m admits a 3 — 2 — 3 foliation. Recall that the first critical value of H,, for
pw=1/21is L1(1/2) = —2.

Theorem 1.12. The regularized subsets M§/2,E and ./\/171"/2’}3 are strictly convex for every E <
—-2=1,(1/2).

The proof of Theorem|[L.12]involves a generalization of the results in [64] for magnetic-mechanical
Hamiltonians. Checking the positivity of the sectional curvatures of ./\/l1 o8 and ./\/l1 L for
E < —2, is reduced to checking the positivity of a certain function deﬁned in the Hlll region
of the regularized critical subset Mvi /2,29 and a monotonicity argument that allows passing the
curvature estimates from the critical value to lower energies. Finally, strict convexity follows from
a simple local-to-global argument.

We are ready to state our main application of Theorem [L.10]

Theorem 1.13. Let o, J and § = OMS, p = OM ] be defined for (u, E) sufficiently close to
(1/2,-2), with E > Ly(p), as in Theorem 1.5 Let P§ C M5, be the continuous family of
retrograde orbits given in Theorem [1.7 for (u, E) sufficiently close to (1/2,—-2). The following
statements hold for every (u, E) sufficiently close to (1/2,—2), with E > Ly (p):

(i) The index-2 Lyapunov orbit Py C /\/le#m is the unique contractible periodic orbit with

index < 2. In particular, Me#m 18 weakly convezx.
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(ii) The regularized Hamiltonian flow on Me#m = RP3*#RP? admits a 3 — 2 — 3 foliation
whose binding orbits are the retrograde orbzts P¢ and P3*, and the Lyapunov orbit P
around the first Lagrange point Iy ().

(iil) Fach chamber M, g or Mg admits infinitely many periodic orbits and infinitely many
homoclinic orbits to the Lyapunov orbit near l1(un). Moreover, if the stable and unstable
manifolds of the Lyapunov orbit do not coincide, then the topological entropy of the flow
on Me#m is positive.

The 3 — 2 — 3 foliation in Theorem follows from Theorems and and Proposition
1.11} We later explain how the foliation implies periodic orbits and homoclinic orbits to the
Lyapunov orbit.

Remark 1.14. For small mass ratios, homoclinic orbits to the Lyapunov orbit were studied in the
regularized component My, by McGehee [56] exploiting the integrability of the Rotating Kepler
Problem. In fact, it is simple to check the linking and the index conditions that imply P’ = ()
in Theorem and thus M, p admits a 2 — 3 foliation for p > 0 sufficiently small and E
slightly above Li(u). McGehee’s construction is relatively simpler than finding a 2 — 3 foliation
but somehow deals with the existence of a family of disks bounded by the retrograde orbit that are
transverse to the flow.

Remark 1.15. Numerical computations suggest that the critical components M;Ll(#) and MZL,Ll(u)
are strictly convex in elliptic coordinates for a large open interval around p = 1/2. For u > 0
sufficiently small, although Mfuh(u) is not strictly convez, it is dynamically convex. See [48] for
a computer-assisted proof of convexity in a certain range of mass ratios and energies below Ly ().
Finally, the critical subsets ./\/l Lo () and ./\/l are expected to be dynamically convex for every
mass ratio and thus 3—2—3 folmtzons should emst slightly above the first Lagrange value for every
mass ratio.

1.4. Birkhoff’s retrograde orbit conjecture. In [6], Birkhoff raised the question of whether the
double cover of the retrograde orbit P5 bounds a disk-like global surface of section for the flow on
the regularized components My, p, MJI'p, = =RP3, E < Li(p). This question was motivated by the
difficulty of proving the existence of a direct orbit around the primaries. The convexity estimates
given in Theorem imply that for all mass ratios sufficiently close to 1/2 and all energies below
the first Lagrange value, the regularized components M7, p and M, are dynamically convex,
i.e., all of its contractible periodic orbits have Conley-Zehnder index at least 3. This positively
answers Birkhoff’s conjecture for such mass ratios and energies.

Theorem 1.16. There exists €g > 0 such that for every |p — 1/2| < ey and E < Li(u), the
following holds:

(i) The RP3-components M, g and M}y are dynamically convew, i.e., every contractible
periodic orbit has index at Teast 3.

(ii) Every retrograde orbit P§ C M g = RP? binds a rational open book decomposition
whose pages are disk-like global surfaces of section. More generally, the same holds for
every periodic orbit P C /\/l .5 Which is transversely isotopic to a Hopf fiber. A similar
statement holds for M}

(i) Let P’ C M, g be the szmple periodic orbit corresponding to a fired point of the first return
map assocmted to the global surface of section bounded by P as in (ii). Then the Hopf
link PU P’ bounds an annulus-like global surface of section. A similar statement holds for

B
1.5. Related works. The theory of pseudo-holomorphic curves in symplectizations was initiated
by Hofer [29] and developed by Hofer, Wysocki, and Zehnder [33, [34] [35]. The first breakthrough
concerning finite energy foliations was motivated by the dynamics on strictly convex hypersurfaces
in R%.
Theorem 1.17 (Hofer-Wysocki-Zehnder [36]). Let a = fag be a dynamically conver contact
form on the tight three-sphere (S3,&y). Then o admits an index-3 periodic orbit binding an open
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book decomposition whose pages are disk-like global surfaces of section. Such an open book is the
projection of a finite energy foliation in the symplectization.

The existence of finite energy foliations projecting to open book decompositions, all of whose
pages are global surfaces of section, was further studied in [31, [32] [38] [39, 40, 41l [42], see the
surveys [7, [30, [63].

A fundamental result by Hofer, Wysocki, and Zehnder establishes more general finite energy
foliations for generic star-shaped hypersurfaces in R%.

Theorem 1.18 (Hofer-Wysocki-Zehnder [37]). Let a = fog be a nondegenerate contact form on
the tight three-sphere (S3,&). Then, for J in a generic subset Jres(a) C J(a) of da-compatible
almost complex structures, there exists a finite energy foliation by J-holomorphic curves whose
projection is a transverse foliation. The binding is formed by simple periodic orbits with self-
linking number —1 and index 1, 2, or 3. FEach regular leaf is the projection of a J-holomorphic
curve, has genus zero and satisfies one of the following conditions:

(i) It has one positive puncture asymptotic to an index-3 orbit and an arbitrary number of
negative punctures asymptotic to index-1 orbits.

(ii) It has one positive puncture asymptotic to an indez-3 orbit, one negative puncture asymp-
totic to an index-2 orbit, and an arbitrary number of negative punctures asymptotic to
index-1 orbits.

(iii) It has one positive puncture asymptotic to an index-2 orbit and an arbitrary number of
negative punctures asymptotic to index-1 orbits.

Wendl [69, [70, [7T], [72] developed further the theory of finite energy curves, constructed finite
energy foliations for overtwisted contact manifolds, and established conditions for a finite energy
curve to be Fredholm regular. The results in [72] are useful in proving Theorem

Fish and Siefring [21] studied connected sums of finite energy foliations. The existence of
finite energy foliations near critical energy surfaces was considered in [I5]. Colin, Dehornoy, and
Rechtmann [§] combined finite energy curves and Fried theory of asymptotic cycles to obtain the
so-called broken books, leading to deep results in Reeb dynamics regarding periodic orbits and
global surfaces of sections [9] T3], [T4].

At the beginning of the twentieth century, Poincaré [60] and Birkhoff [6] made important
contributions to the circular planar restricted three-body problem concerning the existence of
periodic orbits and global surfaces of section. Poincaré proved the existence of annulus-like global
surfaces of section on the earth-side of the regularized energy surface for energies below the first
Lagrange value and small mass ratios. His argument was perturbative, strongly relying on the
integrability of the Rotating Kepler Problem. Birkhoff used the shooting method to find retrograde
orbits for every mass ratio and energy below the first Lagrange value. Conley [10, 1T} 12] and
McGehee [56] studied periodic orbits and homoclinic orbits to the Lyapunov orbits for larger
energies.

The employment of holomorphic curves methods in the circular planar restricted three-body
problem started in [I] with the important observation that the energy surfaces are contact-type.
In [2], the authors discussed the existence of global surfaces of section near the moon for small
mass ratios by checking the strict convexity of the regularized sphere-like component of the energy
surface. Moreno and van Koert [57] found global hypersurfaces of section in the spatial restricted
three-body problem for energies up to slightly above the first Lagrange value. In [44], the authors
showed the existence of global surfaces of section in the spatial isosceles three-body problem.
Several other concrete systems admitting finite energy foliations, including classical dynamical
systems, were found in [I5] [16, [I8, 49, 50, 64, [65]. A method to create finite energy foliations with
specific binding orbits was introduced in [I7] for weakly convex Reeb flows on the tight three-
sphere. This approach was utilized in [I8] to produce weakly convex foliations in the Hénon-Heiles
system for energies slightly above the critical value.

We recommend the book by Frauenfelder and van Koert [24] for a concise introduction to
symplectic methods in celestial mechanics, with emphasis in the circular planar restricted three-
body problem.
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2. PRELIMINARIES

2.1. Reeb flows and pseudo-holomorphic curves. The pair (S3,& = kerag) is a contact
manifold called the tight three-sphere, where aq is the Liouville form restricted to S3. For every
smooth function f : S% — R* a := faq is a contact form on (S2,&), and its Reeb vector field
R is determined by da(R,-) = 0 and a(R) = 1. The flow of R, denoted 9, € R, preserves «
and thus preserves ;. We say that a periodic orbit P = (z,T') is nondegenerate if the linear map
Dy (x(0)) : &olzo) — &olz(o) does not have 1 as an eigenvalue. We say that a is nondegenerate if
all of its periodic orbits are nondegenerate. The iterates of P are denoted P* = (x, kT)), for every
keN.

Given relatively prime integers p > ¢ > 1, we consider the lens space L(p, q) = S®/Z, as before.
Since the contact form ag on S? is Zy-invariant, it descends to a contact form on L(p,¢), also
denoted ag. The contact structure &y := ker ag is called the universally tight contact structure on
L(p,q).

A knot K C L(p,q) is called p-unknotted if there exists an immersion u : D — L(p,q) so that
ulpyop : D\ 0D — L(p,q) \ K is an embedding and u|gp : 0D — K is a p-covering map. The
disk wu is called a p-disk for K. Let K C L(p,q) be p-unknotted and transverse to &. Take a
p-disk v for K and a small non-vanishing section Y of u*§y. Use Y and an exponential map to
push K to a knot K’ that is disjoint from K, close to a p-cover of K, and transverse to u. The
(rational) self-linking number of K is defined as the normalized algebraic intersection number
between K’ and u, i.e. sl(K) := Z%K’ - u. Here, K is oriented by g, K’ inherits the orientation
of K, wu is oriented by K and L(p,q) is oriented by ag A dag > 0. As an example, the knot
K = 7, ,(S* x 0) is p-unknotted and transverse to &. In this case, a p-disk for K is given by
Tp.q © U, Where u(z) = (z,4/1 — |2]2) € S3,Vz € D. One readily checks that a knot K’ as above
satisfies K- u = —p, and thus sl(K) = —.

Let B; C L(p,q),i = 1,...,l, be mutually disjoint regular open three-balls, and let M :=
L(p,q) \ U'_, B;. Then OM is the union of | regular two-spheres S; := dB;. The restriction of ag
and & to M is still denoted a and &g, respectively. We only require OM to be C*.

Let J be an almost complex structure on R x M so that J -9, = R and J(§) = &, where
da(-, J,+) is an inner product on &. Here, a is the R-coordinate, and R and & are regarded as
R-invariant objects on R x M. The space of such J’s is denoted by J(«). Let (%, j) be a connected
Riemann surface (possibly with boundary), and let T' C X \ 0¥ be a finite set. Let Yi=3 \ T,
and let J € J(a). A map @ = (a,u) : ¥ — R x M is called a finite energy .J-holomorphic curve if
it satisfies the non-linear Cauchy-Riemann equation 0% = dii + J (@) o dii o j = 0, and has finite
Hofer energy 0 < E(a) := supger [y, 0*d(¢(a)a) < 400, where T := {¢: R — [0,1], ¢' > 0}.

We consider totally real boundary conditions. Let 71,...,7m, be the components of 9¥. We
assume that for each j = 1,...,myo, there exists a totally real surface L; C {0} x M, that is
TL;®JTL; =T(R x M) along Lj, so that u(vy;) C L;. We denote by I; — +y; the line bundle of
u*&oly, given by 1;(z) = &olu(z) N Tu(z)L; for every z € «;. Later we shall consider the particular
case where L C {0} x (M \ OM) is a totally real surface that transversely intersects the contact
structure and @ = (a,u) : D — R x M is a J-holomorphic disk satisfying @(0D) C L and dza > 0,
where 77 is the outer normal vector along 0.

Each non-removable puncture zp € T' of @ has a sign €(z) € {—1,+1} so that a(z) — €(z0)o0
as z — zg. Furthermore, for suitable polar coordinates s + it € [0,4+00) x R/Z on a punctured
neighborhood of zy the following holds: given a sequence s,, — 400, there exists a subsequence also
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denoted s, and a periodic orbit P = (z,T) so that u(sy,:) = z(€(20)T-) in C°° uniformly in ¢ as
s — 400. The periodic orbit P is called an asymptotic limit of @ at zg, and if P is nondegenerate,
then P is the unique asymptotic limit of @ at zy, and much can be said about the asymptotic
behavior of @ as it approaches P. If €(zy) = +1, we say that zj is a positive puncture. Otherwise,
we say zp is a negative puncture. The signs of the punctures induce the splitting I' = 't UT'~.

2.2. The asymptotic operator and the Conley-Zehnder index. Let P = (z,T) be a periodic
orbit of o and let xp := x(T") : R/Z — M. Let J € J(a). The unbounded self-adjoint operator
Ap : WHA(R/Z, x5&) — L*(R/Z,x%&y), defined by Ap -1 := —J - L;,n, is called the asymptotic
operator of P. Here, £;,.n is the Lie derivative of n along x7. The spectrum o(Ap) of Ap consists
of countably many real eigenvalues accumulating precisely at +0o. An eigenvector e : R/Z — R?
of A € o(Ap) is smooth and never vanishes. Hence, for a fixed trivialization ¥ : x5, — R/Z x R?,
e has a well-defined winding number wind(\), depending only on A and the homotopy class of W.
We omit the dependence on ¥ in the notation. The function o(Ap) > A — wind(\) € Z is
monotone increasing, and given k € Z, there exist precisely 2 eigenvalues (counting multiplicities)
of Ap with winding number k. It can be directly checked that P is nondegenerate if and only if
0¢ o(Ap). Fix § € R, and let

wind<°(Ap) := max{wind(\) : 0(Ap) 3 X < 6},
wind=®(Ap) := min{wind()\) : 0(Ap) 3 A > 6}.
The weighted Conley-Zehnder index of P is defined as
18 (P) := wind<°(Ap) + wind=°(Ap).

The weighted index . (P) depends on J and the homotopy class of ¥. If § = 0, then pu(P) := u°(P)
depends only on the homotopy class of ¥. Since the parity of p(P) does not depend on ¥, there
exists a natural splitting I' = T'eyen U Todq-

Having a geometric definition of u(P) is convenient. In the frame induced by ¥, the linearized
flow along x(t) determines a path of 2 x 2 symplectic matrices t — ®(t),t € [0,T]. Given vy €
R2\ {0}, let 6(t),t € [0,T], be a continuous argument of ®(¢)-vy, and let A(vg) := (0(T)—6(0))/2.
Then Ip := {A(vg),0 # vo € R?} is an interval of length < 1/2, and there exists k € Z such that
for every € > 0 sufficiently small, either k € Ip—e or Ip—e C (k,k+1). We then have, respectively,
u(P) = 2k or u(P) = 2k + 1. Finally, the rotation number of P in the frame induced by ¥ is
defined as p(P) := limy_,c0 5 4(P*), where P* is the k-th iterate of P. It is immediate to check
that if p(P) = 2, then p(P) = 1. Moreover, u(P) > 3 if and only if p(P) > 1.

2.3. Asymptotics of J-holomorphic curves. Let zp € T be a puncture of a J-holomorphic
curve & = (a,u) : X\I' = Rx M and let €(29) € {—1,+1} be the sign of zp. Assume that P = (z,T)
is an asymptotic limit of @ at zp. Denote by Py = (¢, Tp) the simple periodic orbit so that P = PF
for some integer k > 1. Let (9, z,y) € R/Zx Bs(0) be coordinates on a small tubular neighborhood
U C M of Py, so that a = f(d¥ + zdy), for a function f = f(¥,x,y) satisfying f(,0,0) = Ty
and df(19,0,0) = 0 for every 9. Here, Bs(0) C R? is an open disk of radius § > 0 centered at 0.
Let z := (z,y). Consider polar coordinates s + it € [0,00) x R/Z — e~ 27(+) ¢ D\ {0} on a
punctured neighborhood of zp = 0 and write a(s,t) = (a(s,t),9(s,t), 2(s,t)), whenever defined.
Let Ap be the asymptotic operator at P.

Theorem 2.1 (Hofer-Wysocki-Zehnder [33], Siefring [66]). Assume that zo € T is a positive
puncture and that P = P¥ is nondegenerate. Then (9(s,t),2(s,t)) € R/Z x Bs(0) for every s
sufficiently large, and there exist ag, Vg € R, a A-eigenvector e(t) of Ap, with A <0, so that

(2.1) 2(s,t) = e (e(t) + r(s, 1)),
where |r(s,t)] = 0 as s — +oo uniformly in t. Moreover, |a(s,t) — (ag + T's)| = 0 and |9(s,t) —

(kt +99)| = 0 as s = +oo uniformly in t, where ¥ is lifted to a real-valued function.

In Theorem A and e are called the leading eigenvalue and the leading eigenvector of @ at
zo € T, respectively. The leading eigenvector is determined up to a positive multiple. If zg is
a negative puncture, then we consider polar coordinates (s,t) € (—00,0] x R/Z — e**(+it) ¢
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D\ {0} on a punctured neighborhood of zy = 0 and the asymptotic formula still holds for
some positive leading eigenvalue A and a leading eigenvector e. The asymptotic properties of
a(s,t) = —oo and ¥(s,t) as s = —oo are similar to the case of a positive puncture.

We call a puncture zy € I' nondegenerate if @ has an asymptotic formula at zy as in Theorem
for a non-vanishing leading eigenvalue A and a leading eigenvector e. With this definition, the
puncture zp may be nondegenerate even if the asymptotic limit P is degenerate.

Definition 2.2. Let @; : X\ T; = R x M, i = 1,2, be a pair of finite energy J-holomorphic
curves asymptotic to the same nondegenerate periodic orbit P = (x,T) at z; € T;. Let A\; and
e; be the leading eigenvalue and leading eigenvector of u; at z;, respectively. We say that u; and
U approach P through the same direction if A\ = Ao and ey = ces for some constant ¢ > 0. If
e1 = —ceg for some ¢ > 0 then we say that 6y and Gy approach P through opposite directions.

2.4. Uniqueness of J-holomorphic planes and cylinders. The following uniqueness results
on J-holomorphic curves follows from Siefring’s intersection theory [66] [67].

Theorem 2.3. The following uniqueness statements hold:

(i) If u = (a,u) : C = R x M 1is an embedded J-holomorphic plane asymptotic to Py ;, then
up to parametrization and R-translation, u coincides with one of the J-holomorphic planes
projecting to the hemispheres of S; \ Pa,;.

(i) If 11 = (b,v), 02 = (ba,v2) : RX R/Z — R x (M \ OM) are embedded J-holomorphic
cylinders, not intersecting R x Ps, with a positive end at P3 whose leading eigenvalue
has winding number 1, and a negative end at P»;, then up to parametrization and R-
translation, v, coincides with vs.

Proof. The proof of (i) is essentially contained in [I5, Proposition C-3]. However, the proof of (ii)
needs to be adapted to the current situation since the index of P} might be greater than 3. In
that case, the leading eigenvalue of v; at the positive puncture has winding number 1 and thus
does not coincide with the winding of the largest negative eigenvalue of A pr-

Let 01,02 be as in Theorem (ii). Siefring [67] introduced the generalized intersection number
[01] * [02], which is invariant under homotopies that keep the same asymptotic limits. This number
counts actual intersections between the curves as well as intersections at infinity, i.e., intersections
related to the respective punctures of 7 and vy whose asymptotic limits are covers of the same
simple periodic orbit. In particular, this number includes hidden intersections at the punctures,
which correspond to tangencies at infinity or appear only when the curves are suitably perturbed.
Since 77 and 92 have the same asymptotic limits at their respective positive and negative punctures,
and since these curves do not intersect the trivial cylinders R x P; and R x P, ;, Theorem 5.8 from
[67] gives

[01] * [02] = pdg +dy

where dar > 0 is the difference between the winding number ay := d+1 > 1 of the largest negative
eigenvalue of Apr and the winding number of the leading eigenvalue at the positive puncture of
¥1, which is equal to 1. In the same way, d; > 0 is the difference between the winding number of
the leading eigenvalue at the negative puncture, which is equal to 1, and the winding number a_
of the smallest positive eigenvalue of A pr, also equal to 1. Indeed, at the negative puncture, if the
leading eigenvalue does not have winding number 1, then its projection to M must wind around
P, ; with winding number > 2, forcing intersections with 0 M, a contradiction. Hence we obtain
d(')" =d and d;, = 0, which implies that

(2.2) [61] * [02] = pd.

This value accounts for the hidden intersections at P4 that arise from the positive puncture after
suitably perturbing ©; and @5. Since the asymptotic limit is the p-cover of a simple periodic orbit,
the number of these potential intersections is a multiple of p.

The generalized intersection number [01] * [U3] can be better expressed once we have more
information on the relative asymptotic behavior between v, and v5 at both positive and negative
punctures. Assume by contradiction that ¥; does not coincide with o9, i.e., 01 is not obtained
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from 95 by reparametrization and R-translation. In particular, v1 (R x R/Z) # v3(R x R/Z) and
one may consider the non-trivial difference between these curves near the ends. It is then proved
in [67, Theorem 4.4] that

(2.3) [01] * [02] = int(D1, D2) + oo (01, D2),

where int(01,02) > 0 is the algebraic intersection number of 97 and 0o and 0.0 (71, 02) > 0 is the
total asymptotic intersection index of v; and v, i.e.,

oo (D1, D2) = 6L (01, Do) + 6 (91, Da).

Here, 61 (91, 02) and 6 (01, U2) are the asymptotic intersection indices of #; and 2 at the positive
and negative punctures, respectively, given by

5;2 (1~)1, @2) = i;(’[)l, f}g) + poy,

6;0(61,@2) = 150(61,172) —_,
see Lemma 3.20 and equation (3-32) in [67]. Notice that the sign convention in [67] is slightly
different from the one in this paper. Indeed, in [67], the winding number at a negative puncture
has an opposite sign. Here,

it (01, 02) = Fwind, (1, Ua)
is the adjusted winding number between the difference of v; and v on suitable coordinates, see
[66]. In the case of positive punctures, where the curves p-cover P, since the leading eigenvectors
of both curves have winding number 1 and the space of such eigenvectors is two-dimensional, the

winding number of the difference between ¥, and ¥y in suitable coordinates is < 1. The fact that
the asymptotic limit is the p-cover of Ps, this number is multiplied by p. Therefore,

il (91, 2) = —wind |, (91, B2) > —p,

see Corollary 3.21 in [67]. This implies that
63, (01,02) > —p+p(d+1) = pd.

Now, since both leading eigenvalues of ©¥; and ¥, at their negative punctures coincide and have
winding number 1, and since the space of such eigenvectors is one-dimensional, we conclude from
Siefring’s formula [66] for the difference between ¥; and U2 near the negative punctures that

ioo (U1, 02) = wind (01, 02) > 2.
This implies that
5o (b1,72) >2—a_=2—1=1.
The above estimates for §1 (01, 02) and d (1, 02) give
Ooo (01, T) = 61, (01, 02) + 05, (01, 02) > pd + 1,

and thus (2.3)) implies [01] * [02] > pd + 1, contradicting (2.2)). We conclude that ©; coincides with
U9 up to reparametrization and R-translation and this finishes the proof of Theorem [2.3t(ii). O

2.5. Automatic Transversality. Fix a compact connected Riemann surface (3, j) possibly with
non-empty boundary, and let I' C ¥\ ¥ be a finite set. Assume that all punctures of a J-
holomorphic curve @ = (a,u) : \I' = R x M are nondegenerate and denote by P, the asymptotic
limit of @ at z € I'. Assume that the da-area of @ is positive. Fix a symplectic trivialization ¥ of
w*¢, which induces a homotopy class of symplectic trivializations of £ along the asymptotic limits
P,,z € T. Denote by u(P,),z € T, the index of P, induced by ¥. Let A, be the leading eigenvalue
of @ at z. Recall that A\, < 0 if z is a positive puncture, and A\, > 0, otherwise. Let § be a
collection of real numbers §,, z € I', called weights, so that A, < J§, <0 if z is a positive puncture
and 0 < J, < A,, otherwise. In the following, we shall assume that §, is not an eigenvalue of Ap_.
Later, we also assume that no eigenvalue of Ap, exists between A, and J,. Assume that each
boundary component v; C X is mapped under @ into a totally real surface L; C {0} x M and let
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l; — 7; be the line bundle of u*{|,; given by 1;(2) = §|uz) N Ty Lj, V2 € y5 and j =1,--- ,mo.
The §-weighted Conley-Zehnder index and the d-weighted Fredholm index of % are defined as

p@) = Yl )+ 3 W (P = 3 (P,

(24) zel+ zel'—

ind’(@1) := (@) — x (%),
where x(2) = x(X) — #I is the Euler characteristic of Y. The first term in the definition of 1 (%)
consists of Maslov indices of I; C u*{|,, in the frame ¥, and mg is the number of components
of 9. If 6, = 0,Vz € T, then ind’(a) is denoted by ind(@) and called the index of @. Since
W= (P,) < w(P.),¥z € T*, and p’=(P,) > u(P.),¥z € T'", the inequalities ;°(%) < u(%) and
ind’ (@) < ind(@) always hold.

Recall that the d\-area fz u*d\ of u is always non-negative and vanishes if and only if wodu = 0,
where 7w : TM — £ is the projection along the Reeb vector field. We keep assuming that fE u*dA >
0. In this case, the leading eigenvalue and leading eigenvector are well-defined at each puncture.
Since ¥ is connected, Theorem implies that 7 o du does not vanish near the punctures. Since
7 o du satisfies a Cauchy-Riemann equation, each zero is isolated and has a positive local degree.
Hence, 7 o du has finitely many zeros, and the sum of their local degree is denoted by wind (@).
Each zero of 7 o du lying in 9% contributes with half of its local degree. Hence wind, (@) is a
half-integer. According to Theorem each puncture z € I' admits a leading eigenvalue and a
leading eigenvector. The winding number of the leading eigenvector in the frame V¥ is denoted
by winde(2). It is proved in [34] that wind. (@) = >, p+ Windeo(2) — >, cp- windeo(2) — x(%)
provided 9% = (. The theorem below follows from Wendl’s results in [70] and the definitions
above.

Theorem 2.4 (Wendl [70]). The following inequalities hold

(2.5) 0 < 2wind, (@) < ind’ (@) — 2 4 29 + #T°, ., + mo,
é

Oven 48 the number of punctures whose asymptotic limit has an

where g is the genus of X and #I'
even d-weighted index.

Assume that the J-holomorphic curve @ = (a,u) : ¥ — R x M is embedded. Then @*T'(R x M)
splits as Ty @ Ng, where the fiber of Ty at z € ¥ is dua(7.X) and Nj is a complex line bundle
complementary to T;. From the asymptotic behavior of @, see Theorem [2.1] we may assume that
Ny coincides with @*€ near the punctures. We also assume that Nj coincides with u*{|gs; along
ox.

The §-weighted normal first Chern number ¢ (%) of @ is defined as the half-integer

(2.6) 260 (@) == ind’ (W) — 2 4 29 + #T° .., + mo,

. 5 . . . .
where g is the genus of ¥ and I'),, is the number of punctures whose asymptotic limit has an

even d-weighted index. Notice that (2.5)) and (2.6)) imply
(2.7) 0 < wind, (@) < & (@).

If 6, = 0,Vz € T, then ¢ (@) is simply denoted cy(%). If 6, is not specified for some puncture
z, then we tacitly assume that &, = 0. If mg = 0, then ¢ (@) is an integer, since ind®(@) and
#T9 .., have the same parity, see . The half-integer ¢ (%) can be regarded as the algebraic
number of zeros of a section ¢ : ¥ — Nj representing infinitesimal J-holomorphic variations of @
in the normal direction, keeping the same asymptotic limits at the punctures, the same boundary
conditions, and respecting the weight constraints at the punctures. The zeros on the boundary
0% contribute half of their local degree. The section o satisfies DV9; (@) - ¢ = 0, where DN 0,1
is the restriction and projection to the normal bundle N; of the linearized Fredholm operator
DO;(i) between suitable weighted Sobolev spaces. The curve @ is said to be regular if DIy (1) is
surjective. Any such a section of Nz admits an asymptotic formula similar to the one in Theorem
so that at each puncture z € I, o has a leading eigenvalue and a leading eigenvector of the
asymptotic operator Ap_.
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Theorem 2.5 (Wendl [71]). Assume that @ is embedded. If ind® (@) > & (@), then @ is regular. In
particular, the space of J-holomorphic curves near @, with the same asymptotic limits, boundary
conditions and §-weight constraints, has the structure of a smooth manifold with dimension indé(ﬂ).

Theorem can be regarded as follows. Suppose by contradiction that an embedded curve @
with ind® (@) > ¢ (@) is not regular. Then the linearized Cauchy-Riemann operator in the normal
direction has a non-trivial cokernel and thus the dimension of the kernel is d > ind‘;(ﬁ) +1>
c?v(ﬂ) + 1. Considering d independent sections in the kernel, it is then possible to construct a
non-trivial section with d — 1 > ¢ () zeros, a contradiction.

The curves satisfying the conditions of Theorem [